首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitting of Al and Al-6%Zn and Al-12%Zn alloys in KSCN solutions was studied by means of potentiodynamic anodic polarization, cyclic voltammetry, potentiostatic and impedance techniques. Measurements were conducted under different experimental conditions, complemented by ex situ scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). The potentiodynamic anodic polarization curves do not exhibit active dissolution region due to spontaneous passivation. The passivity is due to the presence of thin film of Al2O3 on the anode surface (in case of Al) and the formation of ZnO on the Al2O3 matrix, in case of the two Al-Zn alloys (as evidenced from EDXA). The passive region is followed by pitting corrosion as a result of passivity breakdown by the aggressive attack of SCN anions. SEM images confirmed the existence of pits on the electrode surface. Alloyed Zn was found to enhance pitting attack. The pitting potential (Epit) decreases with an increase in SCN concentration and temperature, but increases with increasing potential scan rate. The current/time transients show that the incubation time for passivity breakdown decreases with increasing applied positive potential, SCN concentration, and temperature. Impedance measurements showed that Nyquist plots are characterized by a depressed charge-transfer semicircle, the diameter of which is a function of SCN concentration, applied potential, solution temperature and sample composition.  相似文献   

2.
In this work, a nickel coating with high density nano-scale twins (NT) was synthesized on Q235 steel by using pulsed electrodeposition technique. The effects of NT structure on pitting corrosion resistance and semi-conducting properties of passive films formed on pure Ni in borate buffer solution with chloride ions were investigated by the potentiodynamic polarization measurements and capacitance measurements. The results indicated that the passive films formed on NT coatings showed higher pitting corrosion resistance and a bi-layer semi-conducting structure distribution, comparing with those formed on industrial electrodeposited (IE) nickel. The passive films are p-type semi-conductors at low potentials, but they show an n-type semi-conductor behavior at high potentials. It demonstrated that NT structure decreased vacancy diffusion velocity and slowed down the growth of passive films consequently. This led to the enhancement of pitting resistance for NT nickel.  相似文献   

3.
The influence of the alloying elements on the uniform and pitting corrosion processes of Al-6061, Al–4.5%Cu, Al–7.5%Cu, Al–6%Si and Al–12%Si alloys was studied in 0.50 M KSCN solution at 25 °C. Open-circuit potential, Tafel polarization, linear polarization resistance (LPR) and ICP-AES measurements were used to study the uniform corrosion process on the surfaces of the tested alloys. Cyclic polarization, potentiostatic current-time transients and impedance techniques were employed for pitting corrosion studies. Obtained results were compared with pure Al. Passivation kinetics of the tested Al samples were also studied as a function of applied potential, [SCN] and sample composition by means of potentiostatic current transients. The induction time, after which the growth of stable pits occurs, decreased with increasing applied potential and [SCN]. Regarding to uniform corrosion, alloyed Cu was found to enhance the corrosion rate, while alloyed Si suppressed it. Alloying elements of the tested samples diminished pitting attack to an extent depending on the percentage of the alloying element in the sample. Among the investigated materials, Al–Si alloys exhibited the highest corrosion resistance towards uniform and pitting corrosion processes in KSCN solutions. The passive and dissolution behaviour of Al was also studied under the conditions of continuous illumination (300–450 nm) based on cyclic polarization and potentiostatic techniques. The incident photons had a little influence on pit initiation and a marked effect on pit growth. These explained in terms of a photo-induced modification of the passive film formed on the anode surface, which render it more resistant to pitting. The effects of UV photons energy and period of illumination on the morphology of the pitted surfaces were also studied.  相似文献   

4.
The present study investigates passivity and localized corrosion of ultrafine-grained (UFG) binary Al-alloys with 0.5, 1 and 2 wt.% of magnesium subjected to three different equal-channel angular pressing (ECAP) pass numbers. The alloys were investigated by electrochemical techniques and surface analyses in different NaCl solutions and compared with their conventionally grained (CG) counterparts. The results of potentiodynamic polarization experiments indicated that the breakdown potential slightly decreased with increasing the ECAP pass number for all alloying series. Major differences are present in the pit transition potential (Eptp), in that the potential shifts to more negative values with increasing number of passes in all series. EIS measurements showed no differences in corrosion resistance with increasing the number of ECAP passes at the open circuit state compared to their CG counterparts, indicating that passive layer properties are not affected by volume fraction of grain boundaries and dislocation density. Furthermore, serious pitting occurred for the coarse grained alloys in a kind of laterally spreading crystallographic filiform corrosion. In contrast, the UFG material exhibits solely local crystallographic pitting corrosion propagating in depth. The results indicate that UFG Al-Mg alloys tend with increasing pass number to deep localized pitting corrosion which leads to a hindered repassivation behavior compared to its CG counterpart, reflected in the negative shift in Eptp.  相似文献   

5.
The electrochemical and corrosion behavior of Ti-based alloys was investigated. The direct metal deposition technique was used to fabricate 21 alloys with different ratio of metals (0 ≤ Al ≤ 27 wt.%, 0 ≤ Fe ≤ 25 wt.%). Corrosion resistance of each alloy was evaluated both qualitatively and quantitatively by voltammetric measurements in the simulated human body fluid conditions (Hank's solution). The corrosion rates of the materials were compared in Hank's solution using Tafel extrapolation method. Among the Ti-xAl-yFe alloys the Ti-7Al-4Fe alloy exhibited the slowest corrosion rate of 7.7 × 10−4 mm/year and the least value of passive current density (6.3 × 10−3 A/m2). The alloy is resistant to pitting corrosion as well.  相似文献   

6.
The pitting corrosion of different positions (Top, Middle and Bottom) of weld nugget zone (WNZ) along thickness plate in friction stir welded 2219-O aluminum alloy in alkaline chloride solution was investigated by using open circuit potential, cyclic polarization, scanning electron microscopy and atomic force microscope. The results indicate that the material presents significant passivation, the top has highest corrosion potential, pitting potential and re-passivation potential compared with the bottom and base material. With the increase of traverse speed from 60 to 100 mm/min or rotary speed from 500 to 600 rpm, the corrosion resistance decreases.  相似文献   

7.
The influence of various concentrations of NaClO4, as a pitting corrosion agent, on the corrosion behaviour of pure Al, and two Al–Cu alloys, namely (Al + 2.5 wt% Cu) and (Al + 7 wt% Cu) alloys in 1.0 M Na2SO4 solution was investigated by potentiodynamic polarization and potentiostatic techniques at 25 °C. Measurements were conducted under the influence of various experimental conditions, complemented by ex situ energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) examinations of the electrode surface. In free perchlorate sulphate solutions, for the three Al samples, the anodic polarization exhibits an active/passive transition. The active dissolution region involves an anodic peak (peak A) which is assigned to the formation of Al2O3 passive film on the electrode surface. The passive region extends up to 1500 mV with almost constant current density (jpass) without exhibiting a critical breakdown potential or showing any evidence of pitting attack. For the three Al samples, addition of ClO4 ions to the sulphate solution stimulates their active anodic dissolution and tends to induce pitting corrosion within the oxide passive region. Pitting corrosion was confirmed by SEM examination of the electrode surface. The pitting potential decreases with increasing ClO4 ion concentration indicating a decrease in pitting corrosion resistance. The susceptibility of the three Al samples towards pitting corrosion decreases in the order: Al > (Al + 2.5 wt% Cu) alloy > (Al + 7 wt% Cu) alloy. Potentiostatic measurements showed that the rate of pitting initiation increases with increasing ClO4 ion concentration and applied step anodic potential, while it decreases with increasing %Cu in the Al samples. The inhibitive effect of SO42− ions was also discussed.  相似文献   

8.
Pitting corrosion of AZ91D-DC (die cast), AZ91D-ESTC (electromagnetically-stirred billets; thixocast), AZ91D-SFTC (billets solidified freely; thixocast) and AJ62x-DC (die cast) specimens was studied in alkaline chloride medium (0.1 M NaOH + 0.05 M NaCl + 2 ml H2O2) at 25 °C and pH 12.3. Electrochemical noise (EN) measurements have confirmed to some extent the polarization results (passive zone, pitting current and average corrosion rate). AZ91D-ESTC specimens have shown the best corrosion resistance followed by AZ91D-SFTC and AZ91D-DC. Intense corrosion rate was observed at the beginning of experiment and it decreased with immersion period. Localized corrosion with dense pitted areas was observed during a 16 h immersion period for AZ91D-SFTC and AZ91D-ESTC specimens. The best passive zone was observed for AJ62x-DC because of the corrosion products formed at the surface. After a 6 h of immersion, EN analyses in the frequency domain indicated a change in the sub-mode of pitting, becoming a classical pitting type, for AJ62x and AZ91D die cast specimens. Analysis with the scanning reference electrode technique (SRET) has showed that AJ62x specimen presented the biggest potential difference between the most active anode and the most active cathode and more numerous zones of intense localized corrosion. It was also found that the lifetime of the pit appeared after 8:20 h of immersion was longer for AJ62x and AZ91D die cast specimens being associated to a classical pitting.  相似文献   

9.
Transition from passive state to stable localised corrosion of reinforcement steel in concrete owing to chloride ingress takes place over a period of time rather than being a one-step-occurrence. The depassivation process was characterised by frequent measurements of corrosion potential, polarisation resistance, and macro-cell currents when short-circuiting the working electrode with additional cathode surface. In addition, the concrete resistivity was continuously monitored and cathodic and anodic polarisation curves were measured. The results are consistent and imply that the localised corrosion process is in the initial phase of pit growth under mixed anodic/ohmic control. With time, the anodic reaction kinetics become more limited and the corrosion rate gets almost entirely determined by anodic control. The observed relationship between achieved maximum corrosion current and concrete resistivity indicates that the extent to which the anodic reaction kinetics are restricted is determined by the concrete microstructure and its ability to retain ionic movement.  相似文献   

10.
The pitting corrosion of Al, and two Al-Cu alloys, namely (Al-2.5% Cu) and (Al-7.0% Cu) was investigated in gluconic acid (HG) solution through linear polarization and cyclic voltammetry techniques complemented with ex situ EDX and SEM examinations of the electrode surface. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method of chemical analysis was used to study the effect of alloyed Cu on the rate of the uniform corrosion of Al in these solutions. Results obtained from ICP were compared with those obtained from polarization measurements. For the three Al samples, the anodic responses did not involve active/passive transition due to spontaneous passivation. Addition of HG induced pitting (confirmed from SEM) within the passive oxide film due to the aggressive attack of gluconate (G) anions. Relationships between pitting potential (Epit), HG concentration, temperature, pH and potential scan rate were established. Alloyed Cu was found to enhance uniform corrosion, while it suppressed pitting attack. Local acidification model is employed to explain passivity breakdown induced by pitting corrosion as a result of the aggressive attack of G anions.  相似文献   

11.
Jebel Dhana, from the Abu Dhabi Water and Electricity Authority (ADWEA), operates two 2 MGD multi-effect thermo-compression distillers commissioned in 1996. Tube failures were first reported approximately 16 months after commissioning. The initial tube failures were from the upper rows, but more recent failures were apparently randomly distributed throughout the tube bundle. Ten tubes were removed and their corrosion morphology was examined macroscopically and microscopically. The corrosion products were analysed by X-ray, EDAX, and EPMA techniques. The copper nickel alloy tubes were found to have suffered from vapour side corrosion; however, there was no sign of any copper oxide deposition, as has often been seen in failed tubes from MSF distillers. The failures took two forms: corrosion fatigue cracking, and pitting corrosion. The corrosion fatigue was in the form of a circumferential crack at a flat portion of the tube in the centre of a tube span. It was believed that the flat surface had developed as a result of fretting against a neighbouring tube, and had been worn away to the point of failure. Unfortunately, the position of the tubes in the tube bundle had not been identified during their removal, but it is suspected that the damaged tube had been in the top row, with the flattened portion directly below one of the two vapour inlet pipes. The other tubes sampled showed pitting corrosion. Some of the pitting had perforated the tube walls whilst others showed pitting on the outer surface only. Some of the pits contained corrosion products whilst others were free of them. This pitting corrosion is attributed to the formation of carbonic acid in the presence of oxygen (air). A weak acid is formed due to the dissolution of CO2 in the condensing water vapour. The gas concentration varies within the tube bundle, due to the vapour phase, allowing the gas concentration to increase in specific areas of the tube bundle, causing the non-uniformity of attack. There was no immediate tie-up between the pitting corrosion and the two steam inlet pipes due to the unknown position of the sampled tubes within the tube bundle. It is recommended that the oxygen level be reduced by ensuring that the distiller vessels are as air-tight as possible, thus reducing the tendency towards pitting corrosion.  相似文献   

12.
In this paper, three types of protective silane films, methyltrimethoxysilane (MTMS), vinyltrimethoxysilane (VTMS) and dodecyltrimethoxysilane (DTMS) were prepared on aluminum alloys AA 2024-T3 by electrodeposition technique. The Reflection-Absorption Fourier Transform IR (FTRA-IR) measurements showed that, the silane films were successfully deposited through chemical bonding between silane agents and Al alloys. Electrochemical impedance spectroscopy (EIS) tests indicated that in comparison with those by conventional “dip-coating” method, silane films electrochemically prepared at cathodic potentials exhibited obviously higher corrosion resistances. “Critical potential” was all observed for each silane system. Silane films prepared at this potential performed the highest corrosion resistance. The scanning electron microscopy (SEM) images indicated a potential dependence of surface morphology of silane films. The highest compactness was obtained at the “critical potential”. Due to the presence of long hydrophobic dodecyl chain in bone structure, DTMS films displayed the highest barrier properties.  相似文献   

13.
The effect of microstructural changes in 304 austenitic stainless steel induced by the processes of gas tungsten arc welding (GTAW) and laser-beam welding (LBW) on the pitting and stress corrosion cracking (SCC) behaviors was investigated. According to the in situ observations with scanning reference electrode technique (SRET) and the breakdown potentials of the test material with various microstructures, the GTAW process made the weld metal (WM) and heat-affected zone (HAZ) more sensitive to pitting corrosion than base metal (BM), but the LBW process improved the pitting resistance of the WM. In the initiation stage of SCC, the cracks in the BM and HAZ propagated in a transgranular mode. Then, the crack growth mechanism changed gradually into a mixed transgranular + intergranular mode. The cracks in the WM were likely to propagate along the dendritic boundaries. The crack initiation rate, crack initiation lifetime and crack propagation rate indicated that the high-to-low order of SCC resistance is almost the same as that for pitting resistance. High heat-input (and low cooling rate) was likely to induce the segregation of alloying elements and formation of Cr-depleted zones, resulting in the degradation in the corrosion resistance.  相似文献   

14.
The use of purified enzymes in microbial influenced corrosion (MIC) studies is increasingly recognized as a powerful tool to understand electrochemical interfacial processes, especially the ennoblement of stainless steels (SS) in natural waters. The ennoblement has attracted the interest of many researchers as the consequences in terms of pitting corrosion are still not well understood.In the present study, the ennoblement of AISI 316L SS was induced by glucose oxidase (Gox) catalyzed reaction or by adding hydrogen peroxide (H2O2) in synthetic fresh water, on the basis of previous work. The corrosion behavior of the sample was studied using potentiodynamic and galvanostatic polarization tests. When the ennoblement occurs, the pitting potential (Ep) becomes nobler as well. The involvement of H2O2 to enhance pits repassivation seems to be a key consideration in this respect.Results obtained using this enzymatic system enable us to reappraise the commonly acknowledged hypothesis that the ennoblement increases the risk of localized attacks.  相似文献   

15.
The following is a concise review of the literature that addresses the impact of marine biofilms on two phenomena—ennoblement of corrosion potential and sulfide derivitization due to sulfate-reducing bacteria. A universally defined mechanism of potential ennoblement has not been established. Extent of ennoblement varies among locations and the extent of ennoblement for a particular material cannot be used to predict an increased likelihood of localized corrosion. There is some controversy as to the susceptibility of low- and medium-grade stainless steels. Carbon steel and copper alloys are susceptible to sulfide derivitization but thermodynamic models cannot predict the susceptibility of these materials. Laboratory experiments designed to provide data on susceptibility to sulfide derivitization have produced conflicting results because of the following: (1) laboratory media can contain anions that inhibit localized corrosion, (2) laboratory media can contain yeast extract that interferes with electrochemical measurements, and (3) deaeration procedures can produce environments that are not conducive for the growth of sulfate-reducing bacteria. In general, alloys that undergo ennoblement are not vulnerable to sulfide derivitization and conversely, alloys that are subject to sulfide derivitization do not become ennobled.  相似文献   

16.
The paper presents methodology and results of electrochemical examination of magnesium in 0.1 M NaCl solution with different pH. The measurements were conducted under potentiodynamic conditions using Dynamic Electrochemical Impedance Spectroscopy (DEIS). Analysis of DEIS results was performed based on electrical equivalent circuit. As the result of analysis changes of separate parameters of the equivalent circuit vs. potential for different pH values of the environment were obtained. Simultaneously with DEIS measurements an investigation using acoustic emission was conducted. The results showed that for pH higher than 12.50 the properties of layers on the surface of magnesium change significantly. One can observe a stable passive state that has properties considerably different from those of the layers that form in solutions with lower alkalinity. In such conditions the beginning of pitting corrosion process can be unequivocally determined by the level of acoustic emission and the values of electrochemical parameters.  相似文献   

17.
Chromium-phosphorus (Cr-P) coatings are electrodeposited from trivalent Cr (Cr(III)) baths containing hypophosphite. The electrochemical corrosion behavior of Cr-P coatings, traditional Cr coatings deposited in hexavalent Cr (Cr(VI)) baths, and chromium-carbon (Cr-C) coatings deposited in Cr(III) baths containing formate are studied by measuring potentiodynamic polarization curves in a 10 wt% HCl solution. The composition and morphology of the coating surface layers are investigated by X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM), respectively. The results of electrochemical tests show that Cr-P coatings exhibit better corrosion resistance than traditional Cr and Cr-C coatings, which is characterized by a lower critical current density, lower passive current density, and lager passive potential range. XPS and SEM analyses confirm that the excellent corrosion resistance of Cr-P coatings is attributed to the formation of a phosphide passive film, which has high stability and self-repairing ability, and can act as a “buffer” to reject the penetration of chloride ions.  相似文献   

18.
Wei Ye  Fuhui Wang 《Electrochimica acta》2006,51(21):4426-4432
Nanocrystallized (NC) 309 stainless steel (309SS) coating has been fabricated on glass substrate by DC magnetron sputtering. The coating, with an average grain size less than 50 nm, had ferritic (bcc) structure rather than the austenitic (fcc) structure of the bulk steel. The electrochemical corrosion behavior of the NC coating and the bulk steel in solutions of 0.25 M Na2SO4 + 0.05 M H2SO4 and 0.5 M NaCl + 0.05 M H2SO4 was investigated by using potentiodynamic polarization, potentiostatic polarization and AC impedance techniques. The results showed that the corrosion behavior of the NC 309SS coating and 309SS bulk steel depended on the composition of the solutions. In the Na2SO4 solution there was only a little difference between the corrosion resistance of the passive films on the NC coating and the bulk steel. However, in the solution with chloride ions, the localized corrosion resistance of 309SS was greatly enhanced by nanocrystallization due to the formation of a compact and stable passive film on the NC coating. The electronic structure of the passive film formed on the NC coating and on the bulk steel was analyzed by means of capacitance measurements, and a corrosion mechanism is proposed.  相似文献   

19.
The pitting corrosion behaviour of Al in aerated neutral sodium perchlorate solutions was investigated by potentiodynamic, cyclic voltammetry, galvanostatic, potentiostatic and electrochemical impedance spectroscopy (EIS) techniques, complemented by ex situ scanning electron microscopy (SEM) examinations of the electrode surface. The potentiodynamic anodic polarization curves do not exhibit active dissolution region due to spontaneous passivation. The passivity is due to the presence of thin film of Al2O3 on the anode surface. The passive region is followed by pitting corrosion as a result of breakdown of the passive film by ClO4 ions. SEM images confirmed the existence of pits on the electrode surface. Cyclic voltammetry and galvanostatic measurements allow the pitting potential (Epit) and the repassivation potential (Erp) to be determined. Epit decreases with increase in ClO4 concentration, but increases with increase in potential scan rate. Potentiostatic measurements showed that the overall anodic processes can be described by three stages. The first stage corresponds to the nucleation and growth of a passive oxide layer. The second and the third stages involve pit nucleation and growth, respectively. Nucleation of pit takes place after an incubation time (ti). The rate of pit nucleation (ti−1) increases with increase in ClO4 concentration and applied step anodic potential (Es,a). EIS measurements showed that at Es,a < Epit, a charge-transfer semicircle is obtained. This semicircle is followed by a Warburg diffusion tail at Es,a > Epit. An attempt is made to compare the values of Epit and Erp obtained through different methods and to determine the factors influencing these values in each particular method.  相似文献   

20.
The electrochemical corrosion and passivation of Al5Zn1.7Mg0.23Cu0.053Nb alloys, submitted to different heat treatments (cold-rolled, annealed, quenched and aged, and quenched in two steps and aged), in sulphate-containing chloride solutions, has been studied by means of cyclic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The cyclic polarization curves showed that sulphate addition to the chloride solution produced a poor reproducible shift of the breakdown potential to more positive potentials. The repassivation potentials, much more reproducible, and practically separating the passive from the pitting potential region, were slightly displaced in the negative direction with that addition. When the alloys were potentiodynamically polarized in the passive potential region, sulphate was incorporated in the oxide film, thus precluding chloride ingress. In addition, Zn depletion was favoured, whereas Mg losses were avoided. Different equivalent circuits corresponding to different alloys and potentials in the passive and pitting regions were employed to account for the electrochemical processes taking place in each condition. This work shows that sulphate makes these alloys more sensitive to corrosion, increasing the fracture properties of the surface layer and favouring the pitting attack over greater areas than chloride alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号