首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have prepared polymer electrolyte membranes (PEMs) from poly(vinyl alcohol) (PVA) and modified PVA polyanion containing 2 or 4 mol% of 2-methyl-1-propanesulfonic acid (AMPS) groups as a copolymer. The PEMs of various AMPS content and cross-linking conditions were prepared to determine the effect of AMPS content and cross-linking conditions on PEM properties. Proton conductivity and permeability of methanol through the PEMs increased with increasing AMPS content, CAMPS, and with decreasing cross-linker concentration, CGA, because of the increase in the water content. The permeability coefficient of methanol through the PEM prepared under the conditions of CAMPS = 2.7 mol% and CGA = 0.35 vol% was about 30 times lower than that of Nafion®117 under the same measurement conditions. The proton permselectivity of the PEM, which is defined as the ratio of the proton conductivity to the permeability coefficient of methanol, gave a maximum value of 66 × 103 S cm−3 s. The value is about three times higher than that of Nafion®117.  相似文献   

2.
A novel sulfonated diamine monomer, 3-(2′,4′-diaminophenoxy)propane sulfonic acid (DAPPS), was successfully synthesized and the sulfonated polyimide (SPI) was prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and DAPPS. The resulting SPI, NTDA-DAPPS, was soluble in common organic solvents. The SPI membrane displayed proton conductivity σ values of 0.12-0.35 S/cm at temperatures ranging from 35 to 90 °C in liquid water, which were similar to or higher than those of Nafion 117 and sulfonated hydrocarbon polymers. The σ of the SPI membrane decreased significantly with decreasing relative humidity (RH) and became much lower than that of Nafion 117 at 30% RH. The SPI membrane displayed good water stability at 80 °C and was thermally stable up to 240 °C. It showed reasonable mechanical strength of a modulus of 1.3 GPa at 90 °C and 90% RH. Its methanol permeability PM was 0.57×10−6 cm2/s at 30 °C and 8.6 wt% methanol in feed, which was a fourth of that of Nafion 117. As a result, its ratio of σ/PM was 21×104 S cm−3 s, which was about 4 times larger than that of Nafion 117, suggesting potential application of the SPI membrane for direct methanol fuel cell.  相似文献   

3.
Wholly aromatic poly(aryl ether ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to ether linkage (m-SPAEEN), intended for fuel cells applications as proton conducting membrane materials, were prepared via nucleophilic substitution polycondensation reactions. The incorporation of rigid naphthalene structure with meta-sulfonic acid groups was with the intent of improving the aggregation of hydrophilic and hydrophobic domains and to increase the acidity and conductivities. m-SPAEEN copolymers were readily synthesized by potassium carbonate mediated nucleophilic polycondensation reactions of commercially available monomers: 2,6-difluorobenzonitrile (2,6-DFBN), 2,8-dihydroxynaphthalene-6-sulfonate sodium salt (2,8-DHNS-6), and 4,4′-biphenol (4,4′-BP) in dimethylsulfoxide (DMSO) at 160-170 °C. The sulfonic acid group content (SC), expressed as a number per repeat unit of polymer, ranged from 0 to 0.6 and was readily controlled by changing the feed ratio of 2,8-DHNS-6 to 2,6-DFBN. High thermal stability of m-SPAEEN copolymers was indicated by observed glass transition temperatures (Tgs) ranging from 223 to 335 °C in sodium salt form and from 230 to 260 °C in acid form (m-SPAEENH) and decomposition temperatures (Td)s over 250 °C in acid form and over 350 °C in sodium form in both nitrogen and air. All m-SPAEENH copolymers exhibited reasonable flexibility and tensile strength in the range of 39-78 MPa, indicating they were mechanically stronger than Nafion®117, which had an approximate value of 10 MPa under the same test conditions. As expected, m-SPAEENH copolymers showed considerably reduced moisture absorption compared to previously prepared sulfonated hydroquinone based poly(aryl ether nitrile). m-SPAEENH copolymers also showed improved proton conductivities. Proton conductivity curves parallel to that of Nafion 117 were obtained with proton conductivity of 10−1 S/cm at equivalent ion exchange capacities (IEC) of 1.6 and 1.9, comparable to Nafion®117. The best compromise combining PEM mechanical strength, water swelling and proton conductivity, was achieved at SC of 0.5 and 0.6.  相似文献   

4.
In continuation of our goal to determine the ability of CO2 to plasticize acrylonitrile (AN) copolymers and facilitate melt processing at temperatures below the onset of thermal degradation, a systematic study has been performed to determine the influence of AN content on CO2 absorption and subsequent viscosity reduction. Our previous report focused on the absorption of CO2 in a relatively thermally stable 65 mol% AN copolymer. In this study, the ability for CO2 to absorb in AN copolymers containing 85-98 mol% acrylonitrile was determined, and subsequent viscosity and equivalent processing temperature reductions were evaluated. Eighty five and 90 mol% acrylonitrile/methyl acrylate (AN/MA) copolymers were found to absorb up to 5.6 and 3.0 wt% CO2, corresponding to reductions of Tg of 37 and 27 °C, and subsequent viscosity reductions of 61 and 56%, respectively. CO2 absorption in these copolymers was found to occur immediately, in contrast to the time dependent absorption observed in the 65 mol% copolymer. An Arrhenius scaling analysis was used to determine the equivalent reductions in processing temperature resulting from the viscosity reductions, and reductions of up to 25 and 9 °C were observed for the 85 and 90 mol% AN copolymers. Based on the specific conditions used for absorption, no significant CO2 uptake was observed for AN copolymers containing greater than 90 mol% acrylonitrile. Higher temperatures than those used here may be required to absorb CO2 into AN copolymers containing greater than 90 mol% AN.  相似文献   

5.
Zongwu Bai  Peter A. Mirau 《Polymer》2007,48(22):6598-6604
A series of sulfonated poly(sulfonium cation) polymers, sulfonated poly(arylenethioethersulfone)s (SPTES)s possess up to two sulfonate groups per repeat unit, and can be easily converted into corresponding acid form of the SPTES polymer to form a tough, ductile, free-standing, pinhole-free membranes with excellent mechanical properties. The SPTES polymers exhibit good water affinity and excellent proton conductivity due to the high water uptake. Proton conductivities between 100 and 300 mS/cm (at 65 °C, 85% relative humidity) were observed for the SPTES polymers with 50 mol% (SPTES-50) to 100 mol% (SPTES-100) of sulfonated monomer. The evaluation by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermomechanical analysis (TMA) showed that the SPTES polymers have excellent thermal stability, mechanical properties, and dimensional stability, making them excellent candidates for the next generation of proton exchange membranes (PEMs) in fuel cell applications.  相似文献   

6.
A novel side-chain-sulfonated aromatic diamine of bis[4-(4-aminophenoxy)-2-(3-sulfobenzoyl)]phenyl sulfone (BAPSBPS) was synthesized. Sulfonated copolyimides were synthesized by random and sequenced block copolymerization of 1,4,5,8-naphthalene tetracarboxylic dianhydride, BAPSBPS and nonsulfonated diamine. They displayed good solubility in common aprotic solvents and high desulfonation temperature of 350 °C, suggesting the high stability of sulfonic acid groups. The reduced viscosity was in the range of 0.4-1.8 dl/g at 0.5 g/dl and 35 °C. Flexible and tough membranes with reasonably high mechanical strength were prepared. They showed anisotropic membrane swelling with larger swelling in thickness than in plane. They displayed reasonably high proton conductivity (σ), taking their lower ion exchanging capacity (IEC) into account. For example, the membrane with IEC of 1.54 mequiv/g showed σ values of 81 and 11 mS/cm in water and 70% RH, respectively, at 60 °C.  相似文献   

7.
A novel sulfonated diamine bearing sulfophenyl pendant groups of 2,2′-(4-sulfophenyl) benzidine (BSPhB) was synthesized. Sulfonated polyimides (SPIs) derived from 1,4,5,8-naphthalene tetracarboxylic dianhydride, BSPhB and other non-sulfonated diamines were successfully synthesized. The SPIs with ion exchange capacity (IEC) of 1.5-2.8 meq g−1 showed high reduced viscosity of 3-10 dL g−1 and high desulfonation temperature of 320 °C. The SPI membranes were tough and flexible, having high stress at break of more than 80 MPa and elongation of 80-100%. They showed highly anisotropic membrane swelling in water with larger swelling in thickness direction than in plane direction. They showed fairly high proton conductivity (σ). For example, the membrane with IEC of 1.77 meq g−1 exhibited σ values of 120 and 260 mS cm−1 at 60 and 120 °C, respectively, in water. They also showed fairly high water stability.  相似文献   

8.
Jinli Qiao 《Polymer》2005,46(24):10809-10816
A new type of chemically cross-linked polymer blend membranes consisting of poly(vinyl alcohol) (PVA), 2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) and poly(vinylpyrrolidone) (PVP) have been prepared and evaluated as proton conducting polymer electrolytes. The proton conductivity (σ) of the membranes was investigated as a function of cross-linking time, blending composition, water content and ion exchange capacity (IEC). Membranes were also characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), and the differential scanning calorimetry (DSC). Membrane swelling decreased with cross-linking time, accompanied by an improvement in mechanical properties and a small decrease in proton conductivity due to the reduced water absorption. The membranes attained 0.088 S cm−1 of the proton conductivity and 1.63 mequiv g−1 of IEC at 25±2 °C for a polymer composition PVA-PAMPS-PVP being 1:1:0.5 in mass, and a methanol permeability of 6.1×10−7 cm2 s−1, which showed a comparable proton conductivity to Nafion 117, but only one third of Nafion 117 methanol permeability under the same measuring conditions. The membranes displayed a relatively high oxidative durability without weight loss of the membranes (e.g. 100 h in 3% H2O2 solution and 20 h in 10% H2O2 solution at 60 °C). PVP, as a modifier, was found to play a crucial role in improving the above membrane performances.  相似文献   

9.
Radical copolymerizations of N-ethylacrylamide and N-n-propylacrylamide (NNPAAm) at various ratios were carried out at −40 °C, in toluene in the presence of 3-methyl-3-pentanol, or in N-ethylacetamide. Syndiotactic-rich copolymers with racemo diad contents of 67.1–70.2%, and isotactic-rich copolymers with meso diad contents of 60.9–64.5% were prepared. Syndiotactic-rich copolymers with NNPAAm compositions of ≥92.9 mol% exhibited large hystereses in the phase-transition temperatures of their aqueous solutions. Isotactic-rich copolymers with NNPAAm compositions of 39.2–67.6 mol% exhibited large hystereses in the phase-transition temperatures of their aqueous solutions. Those of composition >67.6 mol% were insoluble in water. Stereosequence analysis suggested that isotactic sequences favored intramolecular hydrogen bonding between contiguous NNPAAm units, more than syndiotactic sequences. Enhanced intramolecular hydrogen bonding in isotactic sequences was responsible for the large hystereses and insolubility of isotactic-rich copolymers with high NNPAAm compositions.  相似文献   

10.
Masanori Yamada 《Polymer》2005,46(9):2986-2992
The development of anhydrous proton conducting membrane is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 °C). In this study, we have investigated the acid-base hybrid materials by mixing of strong phosphonic acid polymer of poly(vinylphosphonic acid) (PVPA) with the high proton-exchange capacity and organic base of heterocycle, such as imidazole (Im), pyrazole (Py), or 1-methylimidazole (MeIm). As a result, PVPA-heterocycle composite material showed the high proton conductivity of approximately 10−3 S cm−1 at 150 °C under anhydrous condition. In particular, PVPA-89 mol% Im composite material showed the highest proton conductivity of 7×10−3 S cm−1 at 150 °C under anhydrous condition. Additionally, the fuel cell test of PVPA-89 mol% Im composite material using a dry H2/O2 showed the power density of approximately 10 mW cm−2 at 80 °C under anhydrous conditions. These acid-base anhydrous proton conducting materials without the existence of water molecules might be possibly used for a polymer electrolyte membrane at intermediate temperature operations under anhydrous or extremely low humidity conditions.  相似文献   

11.
Feng Zhang  Zhiming Cui  Lei Dai 《Polymer》2008,49(15):3272-3278
A series of novel sulfonated poly(arylene-co-binaphthalimide)s (SPPIs) were successfully synthesized via Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and bis(chloronaphthalimide)s. Bis(chloronaphthalimide)s were conveniently prepared from 5-chloro-1,8-naphthalic anhydride and various diamines. Tough and transparent SPPI membranes were prepared and the electrolyte properties of the copolymers were intensively investigated as were the effects of different diamine structures on the copolymer characterisitics. The copolymer membrane Ia-80, with an ion exchange capacity (IEC) of 2.50 meq g−1, displayed a higher proton conductivity, i.e. 0.135 S cm−1 at 20 °C, as compared to Nafion 117 (0.09 S cm−1, 20 °C). The copolymer membrane Id-70, containing 3,3′-dimethyl-4,4′-methylenedianiline (DMMDA) units, exhibited excellent stability toward water and oxidation due to the introduction of hydrophobic methyl groups on the ortho-position of the imido bond in the copolymer. The mechanical property of Id-70 remained virtually unchanged after immersing membrane in pressured water at 140 °C for 24 h. Furthermore, the introduction of aliphatic segment a hexane-1,6-diamine (HDA) in copolymer led to a significant increase in proton conductivity and water uptake with increasing temperature; the proton conductivity of the Ic-70 membrane reached 0.212 S cm−1 at 80 °C, which was higher than Nafion 117 as well as of the membranes based on aromatic diamines at equivalent IEC values. Consequently, these materials proved to be promising as proton exchange membranes.  相似文献   

12.
A series of novel proton conductive inorganic-organic nanocomposite hybrid membranes doped with phosphotungstic acid (PWA)/phosphomolybdic acid (PMA) and trimethylphosphate PO(OCH3)3 have been prepared by sol-gel process with 3-glycidoxypropyltrimethoxysilane (GPTMS), and tetraethoxysilane (TEOS) as precursors. The hybrid membranes were studied with respect to their structural and thermal properties, elastic moduli and proton conductivity. Thermal analysis including TG and DTA confirmed that the membranes were thermally stable up to 200 °C. Thermal stability of membranes was significantly enhanced by the presence of SiO2 framework. Proton conductivity of 1.59 × 10−2 S/cm with composition of 50TEOS-5PO(OCH3)3-35GPTMS-10PWA was obtained (1.15 × 10−2 S/cm for 10 mol% PMA) at 90 °C under 90% relative humidity. The proton conductivity of the nanocomposite membranes is due to the proton-conducting path through the GPTMS-derived “pseudopolyethylene oxide (pseudo-PEO)” networks in which the trapped solid acid (PWA/PMA) as a proton donor is contained. The molecular water absorbed in the polymer matrix is also presumed to provide high proton mobility, resulting in an increase of proton conductivity with increasing relative humidity.  相似文献   

13.
Sulfonated poly(aryl ether ketone)s (SPAEK) copolymers were synthesized by aromatic nucleophilic polycondensation from 4,4′-(hexafluoroisopropylidene)-diphenol, 1,3-bis(4-fluorobenzoyl)benzene and di-sulfonated difluorobenzophenone. The copolymers exhibited good thermal and oxidative stability. The SPAEK membranes with sulfonic acid content (SC) ranging from 0.6 to 1.16 maintained adequate mechanical strength after immersion in water at 80 °C for 24 h. The proton conductivities of the SPAEK films increased with SC and temperature, reaching values above 3.3×10−2 S/cm at 80 °C for SC≥0.76. Tensile strength measurement indicated that SPAEK membranes with SC 0.76, 0.98 and 1.16 are tough and strong at ambient conditions. Consequently, these materials are promising as proton exchange membranes (PEM) for fuel cells operated at medium temperatures.  相似文献   

14.
Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H3PO4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H3PO4 content and temperature, reaching 3.2 × 10−3 S/cm at 110 °C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H3PO4. The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 × 10−2 S/cm at 110 °C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 °C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells.  相似文献   

15.
Feixiang Gong  Nanwen Li  Suobo Zhang 《Polymer》2009,50(25):6001-6008
Two series of sulfonated poly(phenylquinoxaline)s (SPPQ-x and SPPQ(O)-x, x refers to molar percentage of sulfonated tetraamine monomer) were first synthesized from a sulfonated tetraamine (4,4′-bis(3,4-diaminophenoxy)biphenyl-3.3′-disulfonic acid) and two aromatic bisbenzils (4-phenylglyoxalylbenzil and p,p′-oxydibenzil) in a mild condition. The structures of SPPQ-x and SPPQ(O)-x were characterized by IR and 1H NMR spectra. The properties of these polymer films, such as water uptake, water swelling ratio, proton conductivity, thermal properties, methanol permeability, hydrolytic and oxidative stability were also investigated. The resulting polymers generally showed good solubility in DMAc and DMSO. Flexible and tough membranes with high mechanical strength were prepared. They show very high thermal, thermooxidative, hydrolytic stabilities and low methanol permeability. SPPQ-100 with the IEC value (2.41 mmol/g) displays the conductivity of 0.1 S/cm and a swelling ratio of 7.3% at 100 °C. The low swelling was attributed to the high rigid of polymer backbones and the strong intermolecular interaction between the basic nitrogen atoms of quinoxaline units and sulfonic acid groups. Moreover, we found that the conductivities of SPPQ(O)-x membranes were higher than SPPQ-x membranes at the similar IEC value. The highest conductivity of 0.2 S/cm was obtained for SPPQ(O)-100 at 140 °C. A combination of excellent dimensional and hydrolytic stabilities indicated that the SPPQ ionomers were good candidate materials for proton exchange membrane in fuel cell applications.  相似文献   

16.
Kazuhiro Nakabayashi 《Polymer》2007,48(20):5878-5883
A novel regio-controlled poly(2,5-diphenethoxy-p-phenylene) partially functionalized with sulfonic acids has been developed for a proton exchange membrane. Poly(2,5-diphenethoxy-p-phenylene) was prepared via the oxidative-coupling polycondensation using iron(III) trichloride as an oxidant. A high molecular weight polymer over 270,000 in the weight-average molecular weight was quantitatively obtained in mild conditions. This polymer was then reacted with two and four equimolar trimethylsilylchlorosulfonate in dichloromethane to give the corresponding sulfonic acid-functionalized polymers, whose functionalities were 0.69 and 1.19 per a polymer unit, which were translated to be 1.73 and 2.49 mequiv/g in ion exchange capacity (IEC), respectively. These polymers showed excellent proton conductivity up to 2 × 10−1 S/cm at 80 °C and 95% relative humidity.  相似文献   

17.
Ethylene-vinyl alcohol copolymers (EVAL) were esterified with 3,5-dinitrobenzoyl chloride using the cycled urea N,N′-dimethylpropyleneurea (1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone) (DMPU) as the solvent. Ethylene-vinyl alcohol-vinyl-3,5-dinitrobenzoate terpolymers (EVALVDNB) and ethylene-vinyl-3,5-dinitrobenzoate copolymers (EVDNB) were obtained. Both EVAL copolymers (6-73 mol% VAL) and esterified polymers, EVDNB, and EVALVDNB dissolve in DMPU. The substitution may become total under the experimental conditions. The degree of transformation was determined by 1H NMR. EVDNB copolymers were characterised by IR spectroscopy and 1H and 13C NMR. Thermal properties were studied by DSC. The glass transition temperature of the EVDNB copolymers having a low VDNB content (up to 14 mol%) is roughly constant, whereas above 50 mol% increases. Melting temperature decreases as the VDNB content is increased, owing to the fact that the VDNB groups are excluded from the polyethylene crystal lattice.  相似文献   

18.
Aliphatic lactate-bearing copolyesters were successfully synthesized via copolymerization of L-lactide (LLA) with diesters and diols using Candida antarctica lipase B (CALB) as the catalyst. The resultant copolymers had a Mw up to 38,000 Da with Mw/Mn between 1.5 and 2.0, and contained L-lactate units (up to 53 mol%), C6–C12 diester units, and C4–C6 alkylene units in the polymer chains. The lactate repeat units were present primarily as lactate–lactate diads in the polymers. The LLA-diester-diol copolymers were purified in good yield (70–85%) and all purified copolymers were optically active. Hydrolytic degradation study shows that LLA-diethyl adipate-1,6-hexanediol (LLA-DEA-HD) copolymers are degradable polymers as the molecular weight (Mw) of the copolymer with 53% lactate units decreased by ∼70% upon incubation in PBS solution under physiological conditions (37 °C, pH of 7.4) for 80 days. The LLA-diester-diol copolymers are thermally stable up to at least 300 °C with the temperature of maximum degradation rate ranging from 380 to 410 °C. The copolymers exhibit a wide range of physical properties (e.g., from white solid to wax and liquid) depending on their structure and composition. In particular, the LLA-DEA-HD and LLA-DEA-1,4-butanediol copolymers with ∼50 mol% lactate units are colorless, viscous liquids at ambient temperature. Biodegradable liquid polymers are potentially useful biomaterials for drug delivery to treat ocular ailments because of their good compatibility with sensitive soft tissues.  相似文献   

19.
A series of near-monodisperse diblock copolymers of 2-(N-carbazolyl)ethyl methacrylate and 2-(dimethylamino)ethyl methacrylate (DMAEMA) of relatively low molecular weights (2600-24,000 g mol−1) were synthesized by group transfer polymerization using tetrahydrofuran (THF) as a solvent. The molecular weight distributions and compositions of all the copolymers were obtained using gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. Differential scanning calorimetry and thermal gravimetric analysis provided low glass transition temperatures (Tgs) of about 60 °C and decomposition temperatures between 320 and 450 °C for the copolymers, respectively. The three copolymers with the highest DMAEMA content were water-soluble below pH 7. Aqueous GPC at pH 3 showed that the water-soluble block copolymers formed micelles with apparent number average molecular weights above 100,000 g mol−1.  相似文献   

20.
With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 °C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 °C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 °C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号