共查询到20条相似文献,搜索用时 15 毫秒
1.
The cycle life of LiCoO2-based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150 °C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernable changes in the LiCoO2 cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO2 film occur with dramatic concomitant charge and discharge capacity loss. 相似文献
2.
Natalya Shanahan 《Cement and Concrete Research》2007,37(4):618-623
Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis.The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed. 相似文献
3.
This paper describes the immobilization procedure of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21-H,23-H-porphyrin ion on SiO2/SnO2/phosphate, obtained by the sol-gel processing method. P 2p X-ray photoelectron and the 31P MAS NMR spectra revealed that dihydrogen phosphate is the species present on the surface. The porphyrin was adsorbed on the surface of the modified material and furthermore metallized in situ with Co (II) ion. The porphyrin metallation process was followed with UV-vis spectroscopy by inspecting the Q bands of the free and metallated porphyrin. The free porphyrin presented four Q bands associated to a D2h local symmetry and the metallated one, two bands related to a D4h local symmetry. The amount of electroactive species adsorbed on the material was estimated by integrating the area under the peak of Co (II) → Co (I) reduction by using the pulse differential voltammetric technique. The amount of the metallated porphyrin was 2.3 × 10−10 mol cm−2. A carbon paste electrode of the modified material containing metallated porphyrin was used to study the electrocatalytic reduction of dissolved dioxygen by means of cyclic voltammetry, chronoamperometry and linear sweeping voltammetry. The modified electrode was very stable and exhibited the electrocatalytic reduction of dissolved dioxygen at −180 mV versus SCE by a two-electron mechanism, producing hydrogen peroxide at pH 5.4. The electroactive species was strongly retained on the material surface, presumably inside the pores of the material, since in a test of various oxidation-reduction cycles no significant decrease of the current densities was detected, indicating that it was not leached off during the experiment. 相似文献
4.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker. 相似文献
5.
Fernando Pico Teresa A. Centeno Rosa M. Rojas Jose M. Rojo 《Electrochimica acta》2006,51(22):4693-4700
RuO2·xH2O/NiO composites having RuO2 contents in the range 0-100 wt.% have been prepared by a co-precipitation method. Structural, microstructural and textural transformations after heating the as-prepared composites at 200 and 600 °C have been followed by X-ray diffraction, scanning electron microscopy (SEM) and nitrogen adsorption/desorption isotherms. At 200 °C the composites are made of micrometric particles in which nanometric crystallites of the two oxides are aggregated. The composites show microporosity (0.02-0.10 cm3/g), mesoporosity (0.07-0.12 cm3/g) and relatively high specific surface area (62-309 m2/g). At 600 °C the composites are fully dehydrated and RuO2 has crystallized and segregated. Microporosity and mesoporosity as well as specific surface area are strongly decreased. Specific capacitance and specific surface area of the composites heated at 200 and 600 °C have been measured and discussed on the basis of the RuO2 content. For comparison the specific capacitance and specific surface area of mixtures of NiO and RuO2·xH2O (or RuO2) have been taken as references. The higher specific capacitance of the 200 °C-heated composites compared to the 600 °C-heated ones is due to the higher specific surface area of the former and the higher pseudocapacitance of RuO2·xH2O compared to RuO2. The discussion reported in this work can be applied to other composites such as RuO2·xH2O/carbon and RuO2·xH2O/other oxides. 相似文献
6.
This study reports the onset of the Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes that was investigated using an in situ bending beam method (BBM). The phase transformation during lithium insertion/extraction could be detected using the BBM technique. The phase transformation between the cubic and tetragonal phases was depicted by the larger value of the compressive or tensile differential strain, which is consistent with a well-known phase transformation between those phases in 3 V LiMn2O4. The cyclic deflectograms and cyclic voltammograms were obtained simultaneously. The potential ranges responsible for the Jahn-Teller distortion in 4 V range, which takes place at the electrode surface, was determined by the charge versus. differential strain (dε/dQ) curve. The onset of the Jahn-Teller distortion was observed at the end of the cathodic scan, and the relaxation of the Jahn-Teller distortion was observed at the beginning of anodic scan. Furthermore, the onset of the Jahn-Teller distortion was found to be dependent on the lithium ion insertion rate, which was controlled by the scan rate. 相似文献
7.
Ho Young Park Young Chang Lim Ki Chang Lee Jae Bum Kim Sung Baek Cho 《Electrochimica acta》2007,52(5):2062-2067
The rapid thermal annealing (RTA) process was employed to obtain crystalline LiCoO2 thin films. XRD analyses of the LiCoO2 thin film show increased crystallinity with an increase in the RTA time. The Auger electron spectroscopic analysis of the LiCoO2 film strongly suggests that the RTA process is more advantageous to obtain a stable inter layer between the substrate and the deposited film and between each deposited layer than the conventional annealing process. All-solid-state thin film cells composed of Li/lithium phosphorous oxynitride (Lipon)/LiCoO2 systems were fabricated using the LiCoO2 cathode treated with RTA. The optimum condition of RTA would be 900 s at 650 °C, which exhibited a good rate capability for high power applications. Two cells were connected in parallel to obtain a higher discharge current, and they showed a specific capacity of 38.4 μAh cm−2 μm−1 even at a 25C rate (current density: 7.96 mA cm−2). 相似文献
8.
The electrochemical characterization related to the capacity fading of Li1.1V3O8 nano grains has been investigated. It reveals that capacity loss is associated to the use of liquid electrolyte and that it mainly stems from the active material irrespective of the nature of the liquid electrolyte, the water content, synthesis routes and the positive electrode chemistry. SEM and in operando XRD experiments allow elucidating undergoing physical processes. A film forms from electrolyte decomposition on the surface of the electrode and progressively propagates on cycling through the electrode thickness. Embedded grains become either less or none electrochemically reactive. In the former case, embedded grains give rise to strongly polarized and energetically less favored processes. In the latter case the capacity is not accessible anymore within the potential range resulting in capacity fading. 相似文献
9.
Hui Xia 《Electrochimica acta》2007,52(24):7014-7021
LiCoO2 thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si (Pt) and Au/MgO/Si (Au) substrates, respectively. Crystal structures and surface morphologies of thin films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The LiCoO2 thin films deposited on the Pt substrates exhibited a preferred (0 0 3) texture with smooth surfaces while the LiCoO2 thin films deposited on the Au substrates exhibited a preferred (1 0 4) texture with rough surfaces. The electrochemical properties of the LiCoO2 films with different textures were compared with charge-discharge, dQ/dV, and Li diffusion measurements (PITT). Compared with the (1 0 4)-textured LiCoO2 thin films, the (0 0 3)-textured thin films exhibited relatively lower electrochemical activity. However, the advantage of the (1 0 4)-textured film only remained for a small number of cycles due to the relatively faster capacity fade. Li diffusion measurements showed that the Li diffusivity in the (0 0 3)-textured film is one order of magnitude lower than that in the (1 0 4)-textured film. As discussed in this paper, we believe that Li diffusion through grain boundaries is comparable to or even faster than Li diffusion through the grains. 相似文献
10.
We report on the electrocatalytic activity of immobilized coenzyme B12 and vitamin B12 (as aquocobalamin) for the electrooxidation of l-cysteine and their effects on the electrochemical reversibility of the l-cysteine/l-cystine redox couple, a crucial biological system. Cyclic voltammograms of coenzyme B12 adsorbed on a graphite electrode show that upon the reductive elimination of the 5′-deoxyadenosyl group from the cobalt center, at approximately −1.1 V, the electrochemical response of the modified electrode becomes similar to that of aquocobalamin. The electrochemically pretreated coenzyme B12 shows a high electrocatalytic activity for the electro-oxidation of l-cysteine at physiological pH that has never been observed before with the commonly used metallophthalocyanine catalysts. Also, its activity is slightly higher than that exhibited by aquocobalamin. 相似文献
11.
Mohamed Abbas B. Parvatheeswara Rao Md. Nazrul Islam Kun Woo Kim S.M. Naga Migaku Takahashi CheolGi Kim 《Ceramics International》2014
Highly crystalline single phase spherical and monodisperse cobalt ferrite (CoFe2O4) nanoparticles (NPs) with uniform shape and size distribution have been synthesized by one pot-rapid sonochemical method. The effect of different solvents, such as aqueous, alcoholic, and a mix of water/ethanol in 1:1 volume ratio on the shape, size, and crystalline structure of CoFe2O4 NPs were studied using X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and Fourier transform infrared spectroscopy. The size of CoFe2O4 nanoparticle was controlled in the range from 20 to 110 nm based on the solvent medium used in the synthesis process. Furthermore, the evolution from spherical to cubic morphology of cobalt ferrite NPs is achieved by simply changing the solvent medium from aqueous to alcoholic medium. The magnetic properties of all the synthesized CoFe2O4 NPs were studied by vibrating sample magnetometer (VSM) at room temperature. The magnetization value was found to be particle size dependent, and high magnetization (Ms) of 92.5 emu/g was obtained for the CoFe2O4 NPs sample synthesized in a mixed solution of water and ethanol. A possible reaction mechanism for the formation of cobalt ferrite NPs by the sonochemical technique was discussed. The facile method adopted in our study appears to be a promising route for synthesis of highly crystalline nanoparticles within short times and without the need for using any calcination process. 相似文献
12.
13.
A high-performance LiNi0.8Co0.2O2 cathode was successfully fabricated by a sol-gel coating of CeO2 to the surface of the LiNi0.8Co0.2O2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiNi0.8Co0.2O2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Unlike pristine LiNi0.8Co0.2O2, the CeO2-coated LiNi0.8Co0.2O2 cathode exhibits no decrease in its original specific capacity of 182 mAh/g (versus lithium metal) and excellent capacity retention (95% of its initial capacity) between 4.5 and 2.8 V after 55 cycles. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries. 相似文献
14.
A. TsimpliarakiI. Tsivintzelis S.I. MarrasI. Zuburtikudis C. Panayiotou 《The Journal of Supercritical Fluids》2011,57(3):278-287
Three series of polymer nanocomposites, based on poly(d,l lactic acid) (PDLLA) and organically modified montmorillonite, were prepared by the melt and the solution intercalation technique. The first series was prepared by extrusion using different clay loadings. The second series of nanohybrids was obtained using montmorillonite modified with different types of alkylammonium surfactants in terms of carbon-chain lengths (i.e., 4, 8, 12, 16 and 18). In the third series of nanocomposites, the organic cation concentration of the surfactant was varying. Microcellular porous materials were, afterwards, fabricated from these three series of nanocomposites. The porous structures of pure and nanocomposite PDLLA were prepared by isothermal pressure quench using supercritical CO2 as foaming agent. The morphology of the produced porous materials was investigated by scanning electron microscopy (SEM). Image processing of the samples revealed that the final cellular structure is strongly related to clay loading and, both, the type and the organic cation concentration of the alkylammonium used for the modification of the clay. The results suggest that the size of the pores decreases and the cell density and bulk foam density increase with the increase of clay loading or the surfactant's carbon chain length or the cation concentration in clay. Clay dispersion seems to be enhanced by the supercritical treatment upon foaming. 相似文献
15.
The effect of Cr2O3 particle size on the densification of magnesia refractories was investigated. Magnesia grains (<45 μm) were mixed with 2 wt% of micro-Cr2O3 (2 μm) and nano-Cr2O3 particles (10–20 nm) and sintered at 850–1450 °C, for 5 h in air. The progress of the densification and phase evolution of samples was studied with the support of X-ray diffraction phase analysis (XRD), Fourier transformer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was shown that the densification of magnesia was enhanced by reducing the particle size of the added chromia to the range of 20 nm. According to the phase analysis results, the higher dissolution rate of Cr2O3 in MgO in the MgO–Cr2O3 system was responsible for the faster densification of nano-Cr2O3 containing mixes. 相似文献
16.
The anode products are observed when ethanol fuel is circulated in the direct ethanol fuel cell system using Nafion® as an electrolyte. The main products are CO2 and acetaldehyde. I-V characteristics of a direct type fuel cell using ethanol and acetaldehyde as fuels are investigated. Anode and cathode overpotentials are also measured to analyze the characters of the polarization curves obtained for both fuels. The MEA consisted of PtRu anode catalyst. The voltage drops as the concentration of acetaldehyde solution increases. In the case of ethanol solution, the voltage increases as the concentration increases. The anode overpotential increases as the concentration of acetaldehyde increases although the increase of cathode overpotential is smaller than that of anode overpotential. The opposite result is observed for ethanol solutions, i.e., the anode overpotential increases as the concentration of ethanol decreases. This result shows that the voltage drop observed for acetaldehyde solution results from the anode overpotential. Rotating disc electrode (RDE) measurements and polarization curve measurements were also performed to confirm the relation between acetaldehyde concentration and overpotentials. It is supposed that the electrocatalytic oxidation mechanism of acetaldehyde on PtRu catalyst is different from that of ethanol. 相似文献
17.
18.
Véronique Baroghel-Bouny Pierre Mounanga Ahmed Loukili 《Cement and Concrete Research》2006,36(1):123-136
A broad experimental study has been performed, from the end of mixing up to 2 years, on a set of plain cement pastes prepared with the same type I ordinary portland cement (OPC) and various water-to-cement ratios (W/C), and cured at various constant temperatures. Several parameters have been measured on the hydrating materials, such as chemical shrinkage, volumetric and one-dimensional autogenous deformations, degree of hydration of the cement, Ca(OH)2 content and Vicat setting times. Drying shrinkage has also been measured on the mature materials. In this part II of the paper, the effects of W/C within the range 0.25-0.60 have in particular been analysed in relation to the microstructural characteristics of the materials. This micro-macro analysis has highlighted a W/C threshold value (located around 0.40) both at the macro-level (on autogenous, but also on drying deformations and durability-related properties) and at the micro-level (characteristics of the hydration products, MIP porosity and pore size distribution, etc.).In addition, volumetric and one-dimensional autogenous shrinkage deformations have been compared in the case of W/C=0.25 and T=20 °C. Finally, a critical twofold (chemical and structural) effect of calcium hydroxide has been found. When significant structural effects, generated by the formation and the growth of large-size Ca(OH)2 crystals, take place, swelling can become prominent, as observed for one-dimensional autogenous deformations in the case of medium and high W/C, and deviations are recorded on linear relationships. 相似文献
19.
Anti K Prodjosantoso Brendan J Kennedy Brett A Hunter 《Cement and Concrete Research》2002,32(4):647-655
The compounds formed by the hydration of single-phase samples of the mixed, solid solution, Ca/Sr aluminates, Ca3−xSrxAl2O6, 3≤x≤0 have been studied using high-resolution synchrotron powder diffraction. Hydration of these mixed metal aluminates generally resulted in the formation of at least two hydrogarnet phases, one Ca-rich and the other Sr-rich. The structures of these hydrogarnets have been refined from neutron or synchrotron powder X-ray diffraction (XRD) data. A simple solubility model to explain the phase separation is presented. 相似文献