首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Y2−xLaxW3O12 solid solutions were successfully synthesized by the solid state reaction method. The microstructure, hygroscopicity and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and thermal mechanical analysis (TMA). Results indicate that the structural phase transition of the Y2−xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phase can form for 0≤x≤0.4 with orthorhombic structure and for 1.5≤x≤2 with monoclinic one. High lanthanum content leads to a low relative density of Y2−xLaxW3O12 ceramic. Thermal expansion coefficients of the Y2−xLaxW3O12 (0≤x≤2) ceramics also vary from −9.59×10−6 K−1 to 2.06×10−6 K−1 with increasing substituted content of lanthanum. The obtained Y0.25La1.75W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.66×10−6 K−1 from 103 °C to 700 °C.  相似文献   

2.
The stability of one material, Ti/CuxCo3−xO4, as anode and also cathode was investigated for electrolysis of alkaline aqueous solution. The electrodes were prepared by thermal decomposition method with x varied from 0 to 1.5. The accelerated life test illustrated that the electrodes with x = 0.3 nominally showed the best performance, with a total service life of 1080 h recorded in 1 M NaOH solution under alternating current direction at 1 A cm−2 and 35 °C. The effects of copper content in electrode coating were examined in terms of electrode stability, surface morphology, coating resistivity and coating compositions. The presence of Cu in the spinel structure of Co3O4 could significantly enhance the electrochemical and physicochemical properties. The trends of crystallographic properties and surface morphology have been analyzed systemically before, during and after the electrodes were employed in alkaline electrolysis. The oxygen evolution would lead to the consumption of the coating material and the progressive cracking of the coating. Along with hydrogen evolution, cobalt oxide could be reduced to metal Co and Co(OH)2 with particle sizes changed to smaller values in crystal and/or amorphous form at the cathode. The formation of Co is the key process for this electrode to serve as both anode and cathode. It is also the main reason leading to the eventual failure of the electrodes.  相似文献   

3.
Composite film electrodes containing mechanically mixed MnxCu1−xCo2O4 (0 ≤ x ≤ 1) particles, carbon black Vulcan XC72R and poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were formed on the glassy carbon disk surface of a rotating ring-disk electrode (RRDE) and studied for the oxygen reduction and evolution reactions (ORR and OER, respectively) in 1 M KOH solution. The electrocatalytic activities for both reactions were observed to depend strongly on the Mn content in CuCo2O4. An opposite trend was observed for the apparent and intrinsic electrocatalytic activities for the ORR; the simultaneous presence of Cu and Mn was found to be detrimental to the intrinsic charge density, but beneficial to the geometric charge density with a maximum for Mn0.6Cu0.4Co2O4. The latter was characterized by the highest total number of electrons exchanged per O2 molecule, n, close to 4, greater k1 (4e process)/k2 (2e process) ratios, and by a unique and low Tafel slope (−41 mV dec−1). The results obtained for the OER showed that the intrinsic electrocatalytic activity is determined by the number of active sites (Co4+) electrochemically formed at the oxide surface prior to the OER, from Co3+ cations. The partial substitution of Cu by Mn in CuCo2O4 was found to decrease the OER activity.  相似文献   

4.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

5.
The electrochemical energy storage and delivery on the electrodes composed of hydrous ruthenium oxide (RuOx·nH2O) or activated carbon-hydrous ruthenium oxide (AC-RuOx) composites are found to strongly depend on the substrate employed. The contact resistance at the active material-graphite interface is much lower than that at the active material-stainless steel (SS) mesh interface. Thin films of gold plus RuOx·nH2O deposited on SS meshes (RuOx/Au/SS) are found to greatly improve the poor contact between SS meshes and electrode materials. The maximum specific capacitance (CS,RuOx) of RuOx·nH2O, 1580 F g−1 (measured at 1 mV s−1), very close to the theoretic value, was obtained from an AC-RuOx/RuOx/Au/SS electrode with 10 wt.% sol-gel-derived RuOx·nH2O annealed in air at 200 °C for 2 h. The highly electrochemical reversibility, high-power characteristics, good stability, and improved frequency response of this AC-RuOx/RuOx/Au/SS electrode demonstrate its promising application potential in supercapacitors. The ultrahigh specific capacitance of RuOx·nH2O probably results from the uniform size distribution of RuOx·nH2O nanoparticles, ranged from 1.5 to 3 nm which is clearly observed from the high-resolution transmission electron microscopy (HRTEM).  相似文献   

6.
The electrocatalytic activity of Ru0.8Co0.2O2−x nanocrystals was studied using diffraction, microscopic and spectroscopic techniques to elucidate the role of particle shape and surface chemical composition in the electrocatalytic evolution of oxygen and chlorine. The prepared Ru0.8Co0.2O2−x samples are of the rutile structure, their chemical composition, however, differs. The samples with the smallest particle size compensate for the Co doping by oxygen deficiency. The materials featuring bigger particle size show tendency to compensate for the presence of cobalt by higher valency of Ru. Regardless of the particle size or actual surface composition of the Ru0.8Co0.2O2−x electrodes, the chlorine evolution precedes that of oxygen by ca. 100 mV. The Ru0.8Co0.2O2−x electrodes retain high affinity to oxygen evolution once the reaction becomes possible. This behavior can be ascribed to a stabilization of the six-valent ruthenium, which represents the major intermediate for the oxygen evolution process, at the electrode surface due to the presence of di-valent and tri-valent cobalt. This effect precludes the possible effects of the particle shape and crystal edge distribution.  相似文献   

7.
Values of open-circuit-potentials (OCP) have been determined for pairs of electrodes: Au and Pt, Ni-Ce0.8Sm0.2O1.9 cermet and Au, Pt and Sm0.5Sr0.5CoO3 composite at the YSZ electrolyte, in the uniform atmospheres of xCH4 + yO2 + (1 − x − y)Ar gas mixtures with variable x and y coefficients, at 600 °C. The determined dependencies of OCP values on the initial gas mixture compositions have been compared with the respective dependencies calculated for equilibrium or quasi-equilibrium compositions of these gas mixtures. The OCP values for the pair of Pt and Au electrodes have been measured also in the xH2 + yO2 + (1 − x − y)Ar uniform gas mixtures but no distinct difference of the OCP values has been observed in this atmosphere. For some pairs of electrodes investigated in xCH4 + yO2 + (1 − x − y)Ar atmospheres the measured OCP values have shown differences up to ca 0.9-1.0 V. These differences were stable within large range of compositions of this gas mixture. Within this gas composition range one of the electrodes conserves the potential of oxygen electrode determined by oxygen partial pressure in the initial gas mixture and is insensitive to reaction occurring in the gas phase. These results are discussed on the basis of equilibria or some quasi-equilibria, that establish in the C-H-O gas mixture and the solid carbon deposition is considered. For a given pair of dissimilar electrodes, their selective sensibility to the electrochemical process of oxygen electrode has been confirmed. Within large range of gas mixture concentrations, in the Pt-Au electrode pair Au has shown behavior of the oxygen electrode, whereas the OCP values of the Pt electrode are within the range of hydrogen electrode, also at gas compositions corresponding to the solid carbon stability. With this pair the OCP differences of ca. 600 mV have been obtained. Among three electrodes studied the cermet Ni-Ce0.8Sm0.2O1.9 electrode shows the best electrocatalytic properties resulting in the OCP values following exactly the respective equilibrium dependence. In the pair Ni-Ce0.8Sm0.2O1.9 and Au a stable potential difference of ca. 900 mV have been established. Unexpectedly, Pt electrode in the pair with the Sm0.5Sr0.5CoO3 composite electrode plays role of the oxygen electrode quite insensitive to other components of the equilibrated initial gas mixture. This surprising fact seems indicate that in conditions of the experiments performed the electrocatalytic behavior of the electrode depends not only of the material of this electrode but also on the properties of the second electrode in the given pairs of electrodes.  相似文献   

8.
Hydrothermal treatment (HTT) of RuO2-Ta2O5/Ti electrode, as a method for improving their performance, for use in supercapacitors was investigated.The results show that HTT significantly enhances the stability of the electrodes. The specific capacitance of electrodes, subject to HTT in the temperature range 180-250 °C remains unchanged after 1000 CV cycles between −0.2 and 1.1 V vs. SCE; without HTT a decay to 97% of the initial is observed. The results also show that HTT decreases the activity of the electrodes for O2 and H2 evolution and increases the voltage window by 56-135 mV for supercapacitors, but with a specific capacitance decrease of 7-27%. XPS analyses show the existence of more hydroxides after the HTT, which leads to a little increase in the interplanar distance as indicated in the XDR results. Contact angle measurements show the presence of a more hydrophilic surface after HTT.  相似文献   

9.
The crystal structure, phase transition and thermal expansion behaviors of solid solutions Sc2−xCrxMo3O12 (0≤x≤2) were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). At room temperature, samples with x≤0.7 and x≥0.8 crystallize in orthorhombic and monoclinic structures, respectively. DSC result indicates that the phase transition of Sc0.5Cr1.5Mo3O12 from monoclinic to orthorhombic structure occurs at 203.66 °C. The linear thermal expansion coefficient of orthorhombic phases varies from −2.334×10−6 °C−1 to 0.993×10−6 °C−1 when x increases from 0.0 to 1.5. The near-zero linear thermal expansion coefficients of −0.512×10−6 °C−1 and −0.466×10−6 °C−1 are observed for compounds with x=0.5 and 0.7, respectively.  相似文献   

10.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

11.
(Nd1−xGdx)2(Ce1−xZrx)2O7 (0 ≤ x ≤ 1.0) powders with an average particle size of 100 nm were synthesized with chemical-coprecipitation and calcination method, and were characterized by X-ray diffractometry and scanning electron microscopy. The sintering behaviour of (Nd1−xGdx)2(Ce1−xZrx)2O7 powders was studied by pressureless sintering at 1600–1700 °C for 10 h in air. The relative densities of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions increase with increasing the sintering temperature, and gradually decrease with increasing the content of neodymium and cerium at identical temperature levels. (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions have a single phase of defect fluorite-type structure among all the composition combinations studied. The lattice parameters of (Nd1−xGdx)2(Ce1−xZrx)2O7 solid solutions agree well with the Vegard's rule.  相似文献   

12.
Mg1−xNixAl2O4 (x = 0, 0.25, 0.5, 0.75 and 1) solid solutions have been prepared by combustion synthesis. After annealing the combustion synthesized powders at 1000 °C for 3 h single-phase Mg1−xNixAl2O4 was obtained over the entire range of compositions. The lattice parameter of Mg1−xNixAl2O4 gradually increased from 8.049 Å (NiAl2O4) to 8.085 Å (MgAl2O4), which certified the formation of the spinel solid solutions. All samples prepared by combustion synthesis had blue color shades, denoting the inclusion of Ni2+ in the spinel structure in octahedral and tetrahedral configuration. The crystallite size of Mg1−xNixAl2O4 was in the range of 35-39 nm and the specific surface area varied between 5.8 and 7.0 m2/g.  相似文献   

13.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

14.
LiNi1−xCoxO2 (x = 0, 0.1, 0.2) cathode materials were successfully synthesized by a rheological phase reaction method with calcination time of 0.5 h at 800 °C. All obtained powders are pure phase with α-NaFeO2 structure (R-3m space group). The samples deliver an initial discharge capacity of 182, 199 and 189 mAh g−1 (25 mA g−1, 4.35-3.0 V), respectively. The reaction mechanism was also discussed, which consists of a series of defect reactions. As a result of these defect reactions, the reaction of forming LiNi1−xCoxO2 takes place in high speed.  相似文献   

15.
Preparation of the (Ti1−xNbx)2AlC solid solution (formed from the Mn+1AXn or MAX carbides, where n = 1, 2, or 3, M is an early transition metal, A is an A-group element, and X is C) with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS). Nearly single-phase (Ti,Nb)2AlC was produced through direct combustion of constituent elements. Due to the decrease of reaction exothermicity, the combustion temperature and reaction front velocity decreased with increasing Nb content of (Ti1−xNbx)2AlC formed from the elemental powder compacts. In addition, the samples composed of Ti, Al, Nb2O5, and Al4C3 were adopted for the in situ formation of Al2O3-added (Ti,Nb)2AlC. The SHS process of the Nb2O5/Al4C3-containing sample involved aluminothermic reduction of Nb2O5, which not only enhanced the reaction exothermicity but also facilitated the evolution of (Ti,Nb)2AlC. Based upon the XRD analysis, two intermediates, TiC and Nb2Al, were detected in the (Ti,Nb)2AlC/Al2O3 composite and their amounts were reduced by increasing the extent of thermite reduction involved in the SHS process. The laminated microstructure characteristic of the MAX carbide was observed for both monolithic and Al2O3-added (Ti,Nb)2AlC solid solutions synthesized in this study.  相似文献   

16.
Nanocrystalline materials with chemical composition corresponding to formula Ru1−xNixO2−y (0.02 < x < 0.30) were prepared by sol-gel approach. Substitution of Ru by Ni has a minor effect on the structural characteristics extractable from X-ray diffraction patterns. The electrocatalytic behavior of Ru1−xNixO2−y with respect to parallel oxygen (oxygen evolution reaction, OER) and chlorine (chlorine evolution reaction, CER) evolution in acidic media was studied by voltammetry combined with differential electrochemical mass spectrometry (DEMS). The DEMS data indicate a significant decrease of the over-voltage for chlorine evolution with respect to that of pure RuO2. The oxygen evolution is slightly hindered. The increasing Ni content affects the electrode material activity and selectivity. The overall material's activity increases with increasing Ni content. The activity of the Ru-Ni-O oxides towards Cl2 evolution shows a distinguished maximum for material containing 10% of Ni. Further increase of Ni content results in suppression of Cl2 evolution in favor of O2 evolution. A model reflecting the cation-cation interactions resulting from Ni-doping is proposed to explain the observed trends in electrocatalytic behavior.  相似文献   

17.
The electrochemical properties and electrocatalytic performance of nanocrystalline oxide powders of the type IrxSn1−xO2 (0.2≤x≤1) have been examined. These oxides have been developed primarily as oxygen evolution electrocatalysts for proton exchange membrane (PEM) water electrolysers. The modified polyol method was used to prepare these oxides, by reducing precursors in ethylene glycol followed by thermal oxidation at 500 ° C. The materials were characterised in 0.5 mol dm−3 H2SO4 and PEM electrolytes by cyclic voltammetry, electrochemical impedance spectroscopy, and steady state polarisation measurements. Some comparisons were made between the electrochemical properties of the oxides in the different electrolytes.  相似文献   

18.
A systematic investigation was conducted on the mechanism and electrocatalytic properties of O2 and Cl2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru(0.3)Ti(0.6)Ce(0.1−x)]O2[Nb2O5](x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO2, while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb2O5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO2 content compositions are fragile, due mainly to the porosity caused by CeO2 presence. On the other hand, Nb2O5 addition decreases considerably this instability.  相似文献   

19.
A series of partially Fe-substituted lithium manganese oxides LiFexMn2−xO4 (0 ≦ x ≦ 0.3) was successfully synthesized by an ultrasonic spray pyrolysis technique. The resulting powders were spherical nanostructured particles which comprised the primary particles with a few tens of nanometer in size, while the morphology changed from spherical and porous to spherical and dense with increasing Fe substitution. The densification of particles progressed with the amount of Fe substitution. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns.The as-prepared powders were then sintered at 750 °C for 4 h in air. However, the particles morphology and pure spinel phase of LiFexMn2−xO4 powders did not change after sintering. The as-sintered powders were used as cathode active materials for lithium-ion batteries, and cycle performance of the materials was investigated using half-cells Li/LiFexMn2−xO4. The first discharge capacity of Li/LiFexMn2−xO4 cell in a voltage 3.5-4.4 V decreased as the value x increased, however these cells exhibited stable cycling performance at wide ranges of charge-discharge rates.  相似文献   

20.
RuO2-based electrodes are generally known to be unstable for O2 evolution. In this paper, a stable type of RuO2-based electrode, Ti/RuO2-Sb2O5-SnO2, is demonstrated for O2 evolution. In the ternary oxide coating, RuO2 serves as the catalyst, SnO2 as the dispersing agent, and Sb2O5 as the dopant. The accelerated life test showed that the Ti/RuO2-Sb2O5-SnO2 electrode containing 12.2 molar percent of RuO2 nominally in the coating had a service life of 307 h in 3 M H2SO4 solution under a current density of 0.5 A cm−2 at 25 °C, which is more than 15 times longer than other types of RuO2-based electrodes. Instrumental analysis indicated that RuO2-Sb2O5-SnO2 was a solid solution with a compact structure, which contributed to the stable nature of the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号