首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A discrete strong discontinuity approach   总被引:3,自引:0,他引:3  
In this paper, strong discontinuities are embedded in finite elements to describe fracture in quasi-brittle materials. A new formulation is presented in which global nodes are introduced along the crack path. The displacement jumps are transferred to the element nodes as a rigid body motion. This approach is compared to the discrete approach, in which interface elements are inserted to model discontinuities. The adopted embedded discontinuities and the interface elements share similar kinematics as well as the same numerical integration schemes. Thus, the present formulation is obtained within the framework of a discrete approach and this is why it is called the discrete strong discontinuity approach (DSDA). Numerical tests are considered, namely a shear band, a mode-I and a mixed-mode fracture examples and a failure test of a RC beam externally reinforced with a steel sheet. Results are compared with those obtained from analyses using interface elements and with experimental results. Finally, conclusions are drawn with respect to mesh independence and robustness of the method.  相似文献   

2.
Summary Motivated by recent observations of bent, collapsed and twisted carbon nanotubes, we investigate their behavior at large deformations. These hollow molecules behave remarkably similar to their macroscopic homologs. They reversibly switch into different morphological patterns, and each shape change corresponds to an abrupt release of energy and a singularity in the stress-strain curve. These transformations, simulated using a realistic many-body potential, are accurately described by a continuum-shell model. In contrast, a response to axial tension proceeds smoothly up to a fracture threshold, beyond which a monoatomic carbon chain unravels between the tube fragments.  相似文献   

3.
Taking the strong discontinuity approach as a framework for modelling displacement discontinuities and strain localization phenomena, this work extends previous results in infinitesimal strain settings to finite deformation scenarios. By means of the strong discontinuity analysis, and taking isotropic damage models as target continuum (stress–strain) constitutive equation, projected discrete (tractions–displacement jumps) constitutive models are derived, together with the strong discontinuity conditions that restrict the stress states at the discontinuous regime. A variable bandwidth model, to automatically induce those strong discontinuity conditions, and a discontinuous bifurcation procedure, to determine the initiation and propagation of the discontinuity, are briefly sketched. The large strain counterpart of a non‐symmetric finite element with embedded discontinuities, frequently considered in the strong discontinuity approach for infinitesimal strains, is then presented. Finally, some numerical experiments display the theoretical issues, and emphasize the role of the large strain kinematics in the obtained results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Ductile specimens always exhibit an inclined fracture surface with an angle relative to the loading axis. This paper reports a numerical study on the cup-cone fracture mode in round bar tensile tests and the slant fracture in plane-strain specimens based on continuum damage mechanics. A combined implicit-explicit numerical scheme is first developed within ABAQUS through user defined material subroutines, in which the implicit solver: Standard, and the explicit solver: Explicit, are sequentially used to predict one single damage/fracture process. It is demonstrated that this numerical approach is able to significantly reduce computational cost for the simulation of fracture tests under quasi-static or low-rate loading. Comparison with various tensile tests on 2024-T351 aluminum alloy is made showing good correlations in terms of the load-displacement response and the fracture patterns. However, some differences exist in the prediction of the critical displacement to fracture.  相似文献   

5.
This paper describes a model to predict mechanical strength distribution of silicon wafers. A generalized expression, based on a multimodal Weibull distribution, is proposed to describe the strength of a brittle material with surface, edge, and bulk flaws. The specific case of a cast, unpolished photovoltaic (PV) wafer is further analyzed. Assuming that surface microcracks constitute the dominant mechanism of wafer breakage, this model predicts the strength distribution of PV silicon that matches well the experimental results available in the literature.  相似文献   

6.
7.
In the present comparative study, we investigate the influence of directional mesh bias on the results of failure simulations performed with isotropic and anisotropic damage models. Several fracture tests leading to curved crack trajectories are simulated on different meshes. The isotropic damage model with a realistic biaxial strength envelope for concrete is highly sensitive to the mesh orientation, even for fine meshes. The sensitivity is reduced if the definition of the damage-driving variable (equivalent strain) is based on the modified von Mises criterion, but the corresponding biaxial strength envelope is not realistic for concrete. The anisotropic damage models used in this study capture reasonably well arbitrary crack trajectories even if the biaxial strength envelope remains close to typical experimental data. Their superior performance can be at least partially attributed to their ability to capture dilatancy under shear, which is revealed by a comparative analysis of the behavior of individual models under shear with restricted or free volume expansion.  相似文献   

8.
Criteria assuming that failure of quasi-brittle materials is affected by the stresses acting over a finite distance from the crack tip are widely used inside the scientific community. For instance, they have been applied to predict the failure load of specimens containing sharp V-notches, assuming as a critical parameter the average stress ahead the notch tip. However, this kind of approaches disregards energy balance considerations, which, as well known, are the basis of linear elastic fracture mechanics (LEFM). In order to overcome these drawbacks, the present paper uses a recently introduced finite fracture mechanics (FFM) criterion, i.e. a fracture criterion assuming that crack grows by finite steps. The length of this finite extension is determined by a condition of consistency of both energy and stress requirements; as a consequence, the crack advancement is not a material constant but a structural parameter. The criterion is applied to structures with sharp V-notches. The expression of the generalized fracture toughness, which is a function of material tensile strength, fracture toughness and notch opening angle, is given analytically. Finally, we provide comparisons with: (i) the experimental data we obtained from testing Polystyrene specimens under three point bending; (ii) some experimental data available in the literature. The agreement between theoretical predictions and experimental results is generally satisfactory and, for most of the cases analyzed, the FFM predictions are better than the ones provided by the simple average stress approach.  相似文献   

9.
Within the concept of physical mesomechanics of materials and fracture mechanics the peculiarities of deformation and failure of heat resistant 25Cr1Mo1V steel with a network of thermal fatigue cracks are investigated. The basic regularities and typical characteristic stages of deformation process in specimens of 25CrMo1V steel damaged volumetrically by a network of cracks under localization of plastic strain are found and described numerically.  相似文献   

10.
Consistent theories to describe damage processes are generally presented within the framework of effective stress and internal parameters. It is well known that damage is concerned with the progressive deterioration of elastic properties due to microscopic defects, such microvoids or microcracks. In the framework of Continuum Mechanics, damage is related to irreversible changes (on the microlevel) of small vicinities surrounding material points in the body. So a convenient definition of these small vicinities, named “representative material element”, will be recalled in Part 1, and application will be made to elastoplasticity in Part 2. In the subsequent parts, a fictitious suitable undamaged elastoplastic body accompanying the real damaged one is introduced in order to define the effective stress in the framework of large strains and its use in the construction of damaged elasticity law. Finally application is made to infinitesimal strains that concern most of the examples in literature. Due to limitation of place, plasticity coupled with damage is not considered in this paper.  相似文献   

11.
This paper is concerned with a novel embedded strong discontinuity approach suitable for the analysis of material failure at finite strains. Focus is on localized plastic deformation particularly relevant for slip bands. In contrast to already existing models, the proposed implementation allows to consider several interacting discontinuities in each finite element. Based on a proper re‐formulation of the kinematics, an efficient parameterization of the deformation gradient is derived. It permits to compute the strains explicitly that improves the performance significantly. However, the most important novel contribution of the present paper is the advocated variational constitutive update. Within this framework, every aspect is naturally driven by energy minimization, i.e. all unknown variables are jointly computed by minimizing the stress power. The proposed update relies strongly on an extended principle of maximum dissipation. This framework provides enough flexibility for different failure types and for a broad class of non‐associative evolution equations. By discretizing the aforementioned continuous variational principle, an efficient numerical implementation is obtained. It shows, in addition to its physical and mathematical elegance, several practical advantages. For instance, the physical minimization principle itself specifies automatically and naturally the set of active strong discontinuities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We present a Lagrangian finite element formulation aimed at modeling creep fracture in ice-sheets using nonlocal continuum damage mechanics. The proposed formulation is based on a thermo-viscoelastic constitutive model and a creep damage model for polycrystalline ice with different behavior in tension and compression. In this paper, mainly, we detail the nonlocal numerical implementation of the constitutive damage model into commercial finite element codes (e.g. Abaqus), wherein a procedure to handle the abrupt failure (rupture) of ice under tension is proposed. Then, we present numerical examples of creep fracture under four-point bending, uniaxial tension, and biaxial tension in order to illustrate the viability of the current approach. Finally, we present simulations of creep crack propagation in idealized rectangular ice slabs so as to estimate calving rates at low deformation rates. The examples presented demonstrate the mesh size and mesh directionality independence of the proposed nonlocal implementation.  相似文献   

13.
In this paper, a novel constitutive model combining continuum damage with embedded discontinuity is developed for explicit dynamic analyses of quasi‐brittle failure phenomena. The model is capable of describing the rate‐dependent behavior in dynamics and the three phases in failure of quasi‐brittle materials. The first phase is always linear elastic, followed by the second phase corresponding to fracture‐process zone creation, represented with rate‐dependent continuum damage with isotropic hardening formulated by utilizing consistency approach. The third and final phase, involving nonlinear softening, is formulated by using an embedded displacement discontinuity model with constant displacement jumps both in normal and tangential directions. The proposed model is capable of describing the rate‐dependent ductile to brittle transition typical of cohesive materials (e.g., rocks and ice). The model is implemented in the finite element setting by using the CST elements. The displacement jump vector is solved for implicitly at the local (finite element) level along with a viscoplastic return mapping algorithm, whereas the global equations of motion are solved with explicit time‐stepping scheme. The model performance is illustrated by several numerical simulations, including both material point and structural tests. The final validation example concerns the dynamic Brazilian disc test on rock material under plane stress assumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In the present paper, the distribution and evolution of damage field in single edge cracked three-point-bending and centre cracked tensile specimens are analysed. The dissipation of the specialised ductility is taken as the damage variable in the damage model based on irreversible thermodynamic (IT). The stretched zone size (SZW) is proposed as the characteristic scale in this study. Steel StE 690 was used to perform the tests at Aachen Technical University. By changing the relative crack length of the specimens, it shows that though the critical J integral for physical crack initiation varies from one specimen to another significantly, the corresponding critical values of the specialised parameter based on the damage theory accumulates close to one constant. It indicates that the prediction from the damage theory is independence of the stress states and geometry of specimen.  相似文献   

15.
Conclusion The above analysis shows the necessity for further development of fractal fracture mechanics at micro-, meso-, and macrolevels, using fractal theory and the general principle of synergetics.A. A. Baikov Institute of Metallurgy, Russian Academy of Sciences, Moscow. Published in Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 29, No. 3, pp. 101–106, May–June, 1993.  相似文献   

16.
This paper is aimed to model the appearance and evolution of discrete cracks in quasi-brittle materials using triangular finite elements with an embedded interface in a geometric nonlinear setting. The kinematics for the discontinuous displacement field is presented and the standard variational formulation with respect to the reference configuration is extended to a body with an internal discontinuity. Special attention is paid to the algorithmic treatment. The discontinuity is modeled by additional global degrees of freedom and the continuity of the displacements across the element boundaries is enforced. Finally, representative numerical examples for mode-I and mixed-mode fracture, namely a tension test, different three-point bending tests and a single edge notched beam with structured and unstructured finite element meshes are discussed to study the evolving crack pattern and to show the ability of the model.  相似文献   

17.
A boundary element method (BEM) formulation to predict the behavior of solids exhibiting displacement (strong) discontinuity is presented. In this formulation, the effects of the displacement jump of a discontinuity interface embedded in an internal cell are reproduced by an equivalent strain field over the cell. To compute the stresses, this equivalent strain field is assumed as the inelastic part of the total strain. As a consequence, the non-linear BEM integral equations that result from the proposed approach are similar to those of the implicit BEM based on initial strains. Since discontinuity interfaces can be introduced inside the cell independently on the cell boundaries, the proposed BEM formulation, combined with a tracking scheme to trace the discontinuity path during the analysis, allows for arbitrary discontinuity propagation using a fixed mesh. A simple technique to track the crack path is outlined. This technique is based on the construction of a polygonal line formed by segments inside the cells, in which the assumed failure criterion is reached. Two experimental concrete fracture tests were analyzed to assess the performance of the proposed formulation.  相似文献   

18.
In this work two grades of Isotactic polybutene-1 with a different degree of isotacticity have been investigated; fracture tests have been performed at various temperatures and testing speeds on DCB and SENB samples. Optical methods have been used to record crack advancement.Results of the tests have been interpreted using the fracture mechanics framework; a time–temperature superposition scheme has been adopted to describe crack propagation behaviour over several decades of time-scale. An analytical model has been applied to predict the lifetime of pressurised pipes from experimental fracture data. There is good agreement between model predictions and experimental data obtained from full-scale tests on real pipes.  相似文献   

19.
Continuum fracture mechanics concepts should be applied to solve dynamic fracture problems wherever a continuum approach can provide sufficient answers. Many dynamic fracture problems, however, involve multiple cracks or voids and are not well-suited to the relatively simple continuum approach. This paper describes a statistical fracture mechanics concept on a microscopi scale and illustrates its use for the case of shock-wave-induced ductile spall fracture. The paper further shows how micro-statistical fracture mechanics (MSFM) merges with continuum fracture mechanics by treating a macrocrack propagating in a DCB specimen using MSFM and the MSFM parameters deduced from the spall work.Thus, the two approaches are consistent. Although significantly more complicated, the MSFM approach promises to be helpful in improving our understanding of the influences of microstructure on toughness and in extending continuum approaches to more ductile materials and to smaller specimens.
Résumé Les concepts de fracture mécanique d'un continuum devraient être appliqués à la solution des problèmes de fracture de rupture dynamique dès lors qu'une approche par continuum peut fournir des réponses suffisantes. Cependant, plusieurs problèmes de rupture dynamique comportent des fissures ou des cavités multiples et ne sont pas bien adaptés à une approche par continuum relativement simple. Le mémoire décrit un concept de mécanique de la rupture statistique à une échelle microscopique et illustre son utilisation au cas d'une rupture par décollement ductile sous l'effet d'une onde de choc. On montre en outre qu'une mécanique de rupture micro-statistique peut être envisagée dans le mécanisme de rupture d'un continuum en traitant la propagation d'une macro-fissure dans une éprouvette Cantilever et en utilisant ce concept et les paramètres qui y sont liés, déduits du travail relatif à l'écaillage.Ainsi, les deux approches se révèlent applicables. Bien que considérablement compliquées, l'approche de mécanique de rupture micro-statistique se révèle prometteuse pour améliorer notre compréhension des influences de la microstructure sur la ténacité et pour une extension de l'approche du continuum de milieu continu à des matériaux plus ductiles ou à des éprouvettes plus petites.
  相似文献   

20.
The first part of the paper describes an investigation into the behaviour of adhesively bonded single lap joints (SLJs) subjected to various types of variable amplitude fatigue (VAF) loading. It was seen that a small proportion of fatigue cycles at higher fatigue loads could result in a significant reduction in the fatigue life. Palmgren-Miner’s damage sum tended to be less than 1, indicating damage accelerative load interaction effects. In the second part of the paper, fracture mechanics (FM) and damage mechanics (DM) approaches are used to predict the fatigue lifetime for these joints. Two FM based approaches were investigated, which differed with respect to the cycle counting procedure, however, both approaches were found to under-predict the fatigue lifetime for all the types of spectra used. This was attributed to the inability of the FM based models to simulate the crack initiation phase. A DM based approach was then used with a power law relationship between equivalent plastic strain and the damage rate. Good predictions were found for most of the spectra, with a tendency to over-predict the fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号