首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastic T-stress is a parameter used to define the level of constraint at a crack tip. It is important to provide T-stress solutions for practical geometries to apply the constraint-based fracture mechanics methodology. In the present work, T-stress solutions are provided for circumferential through-wall cracks in thin-walled cylinders. First, cylinders with a circumferential through-wall crack were analyzed using the finite element method. Three cylinder geometries were considered; defined by the mean radius of the cylinder (R) to wall thickness (t) ratios: R/t = 5, 10, and 20. The T-stress was obtained at eight crack lengths (θ/π = 0.0625, 0.1250, 0.1875, 0.2500, 0.3125, 0.3750, 0.4375, and 0.5000, θ is the crack half angle). Both crack face loading and remote loading conditions were considered including constant, linear, parabolic and cubic crack face pressures and remote tension and bending. The results for constant and linear crack face pressure were used to derive weight functions for T-stress for the corresponding cracked geometries. The weight functions were validated against several linear and non-linear stress distributions. The derived weight functions are suitable for T-stress calculations for circumferential cracks in cylinders under complex stress fields.  相似文献   

2.
The T-stress is increasingly being recognized as an important additional stress field characterizing parameter in the analyses of cracked bodies. Using T-stress as the constraint parameter, the framework of failure assessments including the constraint effect has been established; and the effect of T-stress on fatigue crack propagation rate has been investigated by several researchers. In this paper, a simple method for determining the T-stress for small notch-emanating cracks is presented. First, the background on the T-stress calculation using the superposition principle and the similarities between the elastic notch-tip stress fields described by two parameters: the stress concentration factor (Kt) and the notch-tip radius (ρ), are summarized. Then, the method of estimating T-stress for both short and long cracks at the notches is presented. The method is used to predict T-stress solutions for cracks emanating from an internal hole in a wide plate, and cracks emanating from an U-shaped edge notch in a finite thickness plate. The results are compared to the T-stress results in the literature, and the T-stresses solutions obtained from finite element analysis. Excellent agreements have been achieved for small cracks. The method presented here can be used for a variety of notch crack geometries and loading conditions.  相似文献   

3.
ABSTRACT This paper presents the application of the weight function method for the calculation of elastic T -stress. First, the background of the weight function method for the calculation of T -stress is summarized. Then an analysis of known weight functions for T -stress revealed that it is possible to approximate them with one universal mathematical form with three unknown parameters with high accuracy. The existence of this weight function form significantly simplified the determination of weight functions for T -stress. For any particular crack geometry, the unknown parameters can be determined from reference T -stress solutions. The general weight function expression, with suitable reference T -stress solutions, was used to derive the weight functions for single edge cracked plate, double edge cracked plate and center cracked plate specimens. These weight functions were then further used to calculate the T -stress solutions for cracked specimens under several nonlinear stress fields and were compared to available numerical data.  相似文献   

4.
T-stress solutions were derived for tractions acting on the crack-faces near a crack tip. Such solutions are of interest for the determination of the leading term of a weight function representation of T-stresses and the computation of an “intrinsic” T-stress for cracks growing in a material with a rising crack growth resistance. First, the type of the Green’s function for T-stresses is theoretically established. Then, results of finite element computations are reported for edge-cracked bars, DCB and CT specimens, which are suited for the determination of the first series term. As an application of the Green’s functions, the T-stresses caused by bridging interactions very close to the crack tip are computed.  相似文献   

5.
Three-dimensional finite element analyses have been conducted to calculate the elastic T-stress for semi-elliptical surface cracks in finite thickness plates. Far-field tension and bending loads were considered. The analysis procedures and results were verified using both exact solutions and approximate solutions. The T-stress solutions are presented along the crack front for cracks with a/t values of 0.2, 0.4, 0.6 or 0.8 and a/c values of 0.2, 0.4, 0.6 or 1.0. Based on the present finite element calculations for T-stress, empirical equations for the T-stress at three locations: the deepest, the surface and the middle points of the crack front under tension or bending are presented. The numerical results are approximated by empirical formulae fitted with an accuracy of 1% or better. They are valid for 0.2?a/c?1 and 0?a/t?0.8. These T-stress results together with the corresponding K or J values for surface cracks are suitable for the analysis of constraint effects for surface cracked components.  相似文献   

6.
Exact solutions for elastic T-stress of a flat elliptical crack in an infinite body under tension and bending are obtained in this paper. Many papers have been devoted to the problems for elliptical cracks in an elastic medium, but all their attention has been concentrated on the determination of stress intensity factors. In the current paper, elastic T-stress solutions are derived by means of the potential method and a specific collection of harmonic functions. The formulas of the elastic T-stress for a penny-shaped crack [Wang X. Elastic T-stress solutions for penny-shaped cracks under tension and bending. Engng Fract Mech 2004;71:2283-98] follow from the present results as a special case. It is obtained that under tension loading, the elastic T-stress is always compressive along the elliptical crack front. In both tension and bending cases, T-stress essentially depends on the Poisson’s ratio of the material, a parametric angle and semi-axes of the ellipse.  相似文献   

7.
In this paper the J-Q two-parameter characterization of elastic-plastic crack front fields is examined for surface cracked plates under uniaxial and biaxial tensile loadings. Extensive three-dimensional elastic-plastic finite element analyses were performed for semi-elliptical surface cracks in a finite thickness plate, under remote uniaxial and biaxial tension loading conditions. Surface cracks with aspect ratios a/c = 0.2, 1.0 and relative depths a/t = 0.2, 0.6 were investigated. The loading levels cover from small-scale to large-scale yielding. In topological planes perpendicular to the crack fronts, the crack stress fields were obtained. In order to facilitate the determination of Q-factors, modified boundary layer analyses were also conducted. The J-Q two-parameter approach was then used in characterizing the elastic-plastic crack front stress fields along these 3D crack fronts. Complete distributions of the J-integral and Q-factors for a wide range of loading conditions were obtained. It is found that the J-Q characterization provides good estimate for the constraint loss for crack front stress fields. It is also shown that for medium load levels, reasonable agreements are achieved between the T-stress based Q-factors and the Q-factors obtained from finite element analysis. These results are suitable for elastic-plastic fracture mechanics analysis of surface cracked plates.  相似文献   

8.
This paper presents the T-stress solutions (T11 and T33) for semi-elliptical axial surface cracks in a cylinder subjected to mode-I non-uniform stress on the crack surface. Two cylindrical geometries with inner radius (Ri) to wall thickness (t) ratios Ri/= 5 and 10 were considered. The T-stresses were applied along the crack front for normalized crack depth values a/t of 0.2, 0.4 and 0.5 and aspect ratios a/c of 0.2, 0.4, 0.6 and 1.0. Three stress distribution; uniform, linear and parabolic were applied to the crack face. In addition to these solutions, concrete formulation of the superposition principle is given for the T33-stress, which is known as an elastic parameter that describes the out-of-plane crack tip constraint effect. Then, the validity of the formulation was shown through application of our T-stress solutions to the problem of an axial semi-elliptical surface crack in a cylinder subjected to internal pressure, and checking that the principle of superposition holds for the problem.  相似文献   

9.
The non-singular terms in the series expansion of the elastic crack-tip stress field, commonly referred to as the elastic T-stresses, play an important role in fracture mechanics in areas such as the stability of a crack path and the two-parameter characterization of elastic-plastic crack-tip deformation. In this paper, a first order perturbation analysis is performed to study some basic properties of the T-stress variation along a slightly wavy 3D crack front. The analysis employs important properties of Bueckner-Rice 3D weight function fields. Using the Boussinesq-Papkovitch potential representation for the mode I weight function field, it is shown that, for coplanar cracks in an infinite isotropic and homogeneous linear elastic body, the mean T-stress along an arbitrary crack front is independent of the shape and size of the crack. Further, a universal relation is discovered between the mean T-stress and the stress field at the same crack front location under the same loading but in the absence of a crack. First-order-accurate solutions are given for the T-stress variation along a slightly wavy crack front with nearly circular or straight confifurations. Specifically, cosine wave functions are adopted to describe smooth polygonal and slightly undulating planar crack shapes. The results indicate that T 11, the 2D T-stress component acting normal to the crack front, increases with the curvature of the crack front as it bows out but T 33, acting parallel to the crack front, decreases with the crack front curvature.  相似文献   

10.
This paper presents the application of weight function method for the calculation of stress intensity factors (K) and T‐stress for surface semi‐elliptical crack in finite thickness plates subjected to arbitrary two‐dimensional stress fields. New general mathematical forms of point load weight functions for K and T have been formulated by taking advantage of the knowledge of a few specific weight functions for two‐dimensional planar cracks available in the literature and certain properties of weight function in general. The existence of the generalised forms of the weight functions simplifies the determination of specific weight functions for specific crack configurations. The determination of a specific weight function is reduced to the determination of the parameters of the generalised weight function expression. These unknown parameters can be determined from reference stress intensity factor and T‐stress solutions. This method is used to derive the weight functions for both K and T for semi‐elliptical surface cracks in finite thickness plates, covering a wide range of crack aspect ratio (a/c) and relative depth (a/t) at any point along the crack front. The derived weight functions are then validated against stress intensity factor and T‐stress solutions for several linear and nonlinear two‐dimensional stress distributions. These derived weight functions are particularly useful for the development of two‐parameter fracture and fatigue models for surface cracks subjected to fluctuating nonlinear stress fields, such as these resulting from surface treatment (shot peening), stress concentration or welding (residual stress).  相似文献   

11.
The concept of the T-stress as a local constraint factor has been extended to U-notch tip stress distribution as the effective T-stress. The effective T-stress has been estimated as the average value of the T-stress in the region corresponding to the effective (characteristic) distance ahead of the notch tip. The T-stress is evaluated by finite element method using the experimental load for crack initiation and computing the difference between principal stresses along ligament. A large range of critical effective T-stress values is investigated for different specimen configurations and notch aspect ratios. Crack stabilisation and crack bifurcation for fracture emanating from notches according to the critical effective T-stress is discussed. A model involving the influence of the critical effective T-stress on void growth for ductile failure in the vicinity of the notch tip has been proposed.  相似文献   

12.
This paper is centred on the role of the T-stress during mode I fatigue crack growth. The effect of a T-stress is studied through its effect on plastic blunting at crack tip. As a matter of fact, fatigue crack growth is characterized by the presence of striations on the fracture surface, which implies that the crack grows by a mechanism of plastic blunting and re-sharpening (Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: Fatigue crack propagation, STP 415. Philadelphia: ASTM; 1967. p. 131–68 [8]). In the present study, plastic blunting at crack tip is a global variable ρ, which is calculated using the finite element method. ρ is defined as the average value of the permanent displacement of the crack faces over the whole K-dominance area. The presence of a T-stress modifies significantly the evolution of plastic deformation within the crack tip plastic zone as a consequence of plastic blunting at crack tip. A yield stress intensity factor KY is defined for the cracked structure, as the stress intensity factor for which plastic blunting at crack tip exceeds a given value. The variation of the yield stress intensity factor was studied as a function of the T-stress. It is found that the T-stress modifies significantly the yield point of the cracked structure and that the yield surface in a (T, KI) plane is independent of the crack length. Finally, a yield criterion is proposed for the cracked structure. This criterion is an extent of the Von-Mises yield criterion to the problem of the cracked structure. The proposed criterion matches almost perfectly the results obtained from the FEM. The evolution of the yield surface of the cracked structure in a (T, KI) plane was also studied for a few loading schemes. These results should develop a plasticity model for the cracked structure taking into account the effect of the T-stress.  相似文献   

13.
Analytical expressions for the elastic constant stress terms of the asymptotic field, the so called T-stresses, for internal mixed-mode elliptical cracks in infinite homogeneous and isotropic elastic solids are addressed. To solve the problem the mixed-mode crack problem is divided into sub-problems using the superposition method, and each sub-problem is then solved for the asymptotic stress field. Considering the expansion of the local stress field at the crack front, the elastic T-stress terms are derived for each sub-problem. The results are superimposed to give the analytical expressions of the so far missing elastic T-stresses for mixed-mode elliptical cracks.The effect of the T-stresses on the size and shape of the plastic zone at the crack tip is discussed, and analytical results are compared to the ones from finite element analyses, both for the T-stress components and the size of the plastic zone. For an accurate prediction of the plastic zone all singular and constant terms (T-stresses) in the stress expansion formulae should be considered. It is observed that negative T-stresses increase the size of the plastic zone, while positive ones reduce it.  相似文献   

14.
Analytical expressions for all non-singular stress terms of the asymptotic crack tip field, the so-called T-stresses of internal mixed mode circular (penny shaped) cracks in infinite homogeneous and isotropic elastic solids are addressed. To solve the problem the mixed mode crack problem is divided into sub-problems using the superposition method, and each sub-problem is then solved for the asymptotic stress field. Considering the expansion of the local stress field at the crack front, the elastic T-stress terms are derived for each sub-problem. The results are superimposed to give the analytical expressions of the so far missing elastic T-stresses of internal mixed mode penny shaped cracks.The effect of the T-stresses on the size and shape of the plastic zone at the crack tip is discussed, and analytical results are compared to the ones from finite element analyses, both for the T-stress components and the size of the plastic zone. For an accurate prediction of the plastic zone all the singular terms and the constant terms (T-stresses) in the stress expansion formulae should be considered. It is observed that negative T-stresses increase the size of the plastic zone, while positive ones reduce it.  相似文献   

15.
Extensive finite element analyses have been conducted to obtain solutions of the A-term, which is the second parameter in three-term elastic-plastic asymptotic expansion, for test specimens. Three mode I crack plane-strain test specimens, i.e. single edge cracked plate (SECP), center cracked plate (CCP) and double edge cracked plate (DECP) were studied. The crack geometries analyzed included shallow to deep cracks. Solutions of A-term were obtained for material following the Ramberg-Osgood power law with hardening exponent of n = 3, 4, 5, 7 and 10. Remote tension loading was applied which covers from small-scale to large-scale yielding. Based on the finite element results, empirical equations to predict the A-terms under small-scale yielding (SSY) to large-scale yielding conditions were developed. In addition, by using the relationships between A and other commonly used second fracture parameters such as Q factor and A2-term, the present solutions can be used to calculate parameters A2 and Q as well. The results presented in the paper are suitable to calculate the second elastic-plastic fracture parameters for test specimens for a wide range of crack geometries, material strain hardening behaviors and loading conditions.  相似文献   

16.
The stress intensity factor K and the elastic T-stress for corner cracks have been determined using domain integral and interaction integral techniques. Both quarter-circular and tunnelled corner cracks have been considered. The results show that the stress intensity factor K maintains a minimum value at the mid-plane where the T-stress reaches its maximum, though negative, value in all cases. For quarter-circular corner cracks, the K solution agrees very well with Pickard's (1986) solution. Rapid loss of crack-front constraint near the free surfaces seems to be more evident as the crack grows deeper, although variation of the T-stress at the mid-plane remains small. Both K and T solutions are very sensitive to the crack front shape and crack tunnelling can substantially modify the K and T solutions. Values of the stress intensity factor K are raised along the crack front due to crack tunnelling, particularly for deep cracks. On the other hand, the difference in the T-stress near the free surfaces and at the mid-plane increases significantly with the increase of crack tunnelling. These results seem to be able to explain the well-observed experimental phenomena, such as the discrepancies of fatigue crack growth rate between CN (corner notch) and CT (compact tension) test pieces, and crack tunnelling in CN specimens under predominantly sustained load.  相似文献   

17.
A procedure for constraint correction of crack growth resistance curves for single edge notched specimens and for pipe geometries is presented. The procedure is based on FE models with the combination of shell- and line-spring finite elements. Crack tip opening displacement and T-stress are employed, and ductile crack growth is accounted for. Experimental crack growth resistance curves are obtained for both single edge notched tension- and bending-specimens for different crack depths to cover significantly different constraint levels. To account for different constraint levels, a method to scale the resistance curve using the T-stress is implemented. The analyses include ductile crack growth in both the circumferential and thickness directions. The effect of circumferential crack growth with biaxial loading is also presented. The results from the line-spring model are compared with detailed 3D-models for verification of the implementation of circumferential crack growth. The importance of including crack growth in circumferential direction is discussed based on numerical parametric studies. A measure to quantify the importance of circumferential crack growth is proposed.  相似文献   

18.
Mode I cracks subjected to large T-stresses   总被引:1,自引:0,他引:1  
There are several criteria for predicting brittle fracture in mode I and mixed mode loading. In this paper, the modified maximum tangential stress criterion originally proposed for mixed mode loading, is employed to study theoretically brittle fracture for mode I cracks. In particular, the effect of the non-singular term of stress, often known as the T-stress, on the angle of initiation of fracture and the onset of crack growth is explored. The T-stress component of the tangential stress vanishes along the crack line. Therefore, it is often postulated for linear elastic materials that the effect of T-stress on mode I brittle fracture can be ignored. However, it is shown here that the maximum tangential stress is no longer along the line of initial crack when the T-stress exceeds a critical value. Thus, a deviation in the angle of initiation of fracture can be expected for specimens having a large T-stress. It is shown that the deviation angle increases for larger values of T-stress. Theoretical results show that the apparent fracture toughness decreases significantly when a deviation in angle occurs. Earlier experimental results are used to corroborate the findings. The effect of large T-stresses is also explored for a crack specimen undergoing moderate scale yielding. The elastic-plastic investigation is conducted using finite element analysis. The finite element results reveal a similar deviation in the angle of maximum tangential stress for small to moderate scale yielding.  相似文献   

19.
It is known that sign of T-stress in cracked specimens affects fracture toughness under mixed mode conditions. We suggest a new test involving an inclined edge cracked semi circular specimen subjected to asymmetric three-point bend loading (IASCB specimen) that covers a broad range of modes I and II SIFs and T-stress values. It can provide both positive and negative T-stresses. This is illustrated by FEM computations.  相似文献   

20.
This paper presents a modified maximum tangential stress criterion (MMTS) for prediction of the fracture initiation conditions in kinked bi-material cracks. The criterion takes into account the effect of T-stress as well as the stress intensity factors (KI and KII) to predict the mixed mode fracture toughness of interface cracked specimens. First the fracture criterion is developed and the effect of sign and magnitude of T-stress on mixed mode fracture toughness is studied analytically. Then, the suggested criterion is evaluated using the experimental data reported for some epoxy/Aluminum Brazil-nut-sandwich specimens in the literature. The MMTS criterion is also compared with the conventional maximum tangential stress (MTS) criterion and hence, significantly improved estimates were achieved for mixed mode fracture toughness of the tested specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号