首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium transport through the fractal LiMn2O4 film electrode under the cell-impedance-controlled constraint was investigated by employing ac-impedance spectroscopy, potentiostatic current transient technique and linear sweep voltammetry. For this purpose, the flat and fractal LiMn2O4 film electrodes were prepared on the as-deposited Pt/polished Al2O3 substrate and the surface modified Pt/unpolished Al2O3 substrate, respectively. From the analysis of the ac-impedance spectra obtained from the flat and fractal electrodes, it is found that the apparent self-similar fractal dimension reduces the charge-transfer resistance, and the phase angle of the diffusion impedance under the semi-infinite diffusion condition positively deviates in absolute value from 45° with increasing fractal dimension. All the potentiostatic current transients experimentally measured from the flat and fractal LiMn2O4 electrodes showed non-generalised Cottrell behaviour which resulted from the cell-impedance-controlled constraint during lithium transport. In the case of linear sweep voltammogram theoretically calculated and experimentally measured from the flat and fractal LiMn2O4 electrodes, the power dependence of the peak current on the scan rate hardly exhibited the generalised Randles-Sev?ik behaviour. From the analyses of the potentiostatic current transients and the linear sweep voltammograms, furthermore, it is experimentally confirmed that the internal cell resistance mainly determining the cell-impedance-controlled lithium transport strongly depends upon the fractal dimension as well as such external parameters as the applied potential step and the amount of lithium transferred during lithium transport.  相似文献   

2.
Lithium transport through the partially inactive fractal Li1 − δMn2O4 film electrode under the cell-impedance-controlled constraint was theoretically investigated by using the kinetic Monte Carlo method based upon random walk approach. Under the cell-impedance-controlled constraint, all the potentiostatic current transients calculated from the totally active and partially inactive fractal electrodes hardly exhibited the generalised Cottrell behaviour and they were significantly affected in shape by the interfacial charge-transfer kinetics. In the case of the linear sweep voltammogram determined from the totally active and partially inactive fractal electrodes, all the power dependence of the peak current on the scan rate above the characteristic scan rate deviated from the generalised Randles-Sev?ik behaviour. From the analyses of the current transients and the linear sweep voltammograms simulated with various values of the simulation parameters, it was further recognised that the cell-impedance-controlled lithium transport through the partially inactive fractal Li1 − δMn2O4 film electrode strongly deviates from the generalised diffusion-controlled transport behaviour of the electrode with the totally active surface, which is attributed to the impeded interfacial charge-transfer kinetics governed by the surface inhomogeneities including the fractal dimension of the surface and the surface coverage by active sites and by the kinetic parameters including the internal cell resistance.  相似文献   

3.
Lithium transport through LiCoO2/Li1−δMn2O4 bilayer film electrode prepared by radio-frequency (rf) magnetron sputtering was investigated in a 1 M solution of LiClO4 in propylene carbonate. From the analyses of the AC-impedance spectra experimentally measured from the Li1−δMn2O4 single-layer and LiCoO2/Li1−δMn2O4 bilayer film specimens, the internal cell resistance of the LiCoO2/Li1−δMn2O4 bilayer film electrode was determined to be smaller in value than that of the Li1−δMn2O4 single-layer film electrode over the whole potential range, which can be accounted for by the kinetic facility for the interfacial charge-transfer reaction in the presence of the more conductive LiCoO2 surface film. Moreover, from the analyses of the anodic current transients measured from both the film specimens, it was suggested that the cell-impedance-controlled constraint at the electrode surface is changed to the diffusion-controlled constraint simultaneously characterised by the large potential step and the small amount of lithium transferred during lithium transport. In addition, in the case of the LiCoO2/Li1−δMn2O4 bilayer film electrode, it was found that the critical value of the applied potential step needed for the mechanism transition is reduced, which strongly indicates that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport. Furthermore, from the comparison of the cathodic current transients measured on the Li1−δMn2O4 single-layer film specimens with various thicknesses, it was experimentally verified that the diffusion resistance is explicitly distinguished from the internal cell resistance.  相似文献   

4.
Lithium transport through LiMn2O4 film electrode was investigated in aqueous saturated LiNO3 solution by analyses of the potentiostatic current transient and ac-impedance spectra. It was found that the current transient hardly shows the Cottrell behaviour, and the initial current is linearly proportional to the potential step. This strongly suggests that lithium transport through the film electrode proceeds in aqueous LiNO3 solution by the same mechanism involving the cell-impedance-controlled constraint, as does lithium transport in non-aqueous organic solution such as LiClO4 in propylene carbonate (PC). However, the cell-impedance in aqueous LiNO3 solution was determined to be much smaller by more than one order in value than that cell-impedance in non-aqueous LiClO4-PC solution over the whole potential range, indicating lithium transport is markedly enhanced in aqueous electrolyte. From the comparison between the ac-impedance spectra obtained in aqueous and non-aqueous electrolytes, the reduced cell-impedance in aqueous electrolyte can be accounted for by the kinetic facility for the interfacial charge-transfer reaction in the absence of the resistive surface film as well as by the high conductivity of the electrolyte itself.  相似文献   

5.
The mechanism transition of lithium transport through a Li1−δMn2O4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li1−δMn2O4 and surface-modified Li1−δMn2O4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li1−δMn2O4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li1−δMn2O4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li1−δMn2O4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li1−δMn2O4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance.  相似文献   

6.
The effect of the surface roughness on the cell-impedance-controlled lithium transport through the Li1−δCoO2 film electrode was experimentally investigated in a 1 M LiClO4-PC solution by the analyses of the potentiostatic current transient (PCT) and the linear sweep voltammogram (LSV). The flat and fractal Li1−δCoO2 film electrodes were prepared on the Pt/polished Al2O3 substrate and the surface-modified Pt/unpolished Al2O3 substrate, respectively. From the ac-impedance spectra obtained from the flat and fractal electrodes, it is found that the apparent self-similar fractal dimension reduces the charge-transfer resistance. All the PCTs did not exhibit the generalised Cottrell behaviour until the characteristic time tch and all the power dependence of the peak current on the potential scan rate positively deviated from the generalised Randles-Sevcik behaviour above the characteristic scan rate νch in the LSVs. From the analyses of the PCTs and the LSVs in terms of tch and νch, furthermore, it is experimentally confirmed that the surface roughness plays a significant role in the kinetic facilitation of the interfacial charge-transfer reaction during the whole lithium intercalation and deintercalation processes.  相似文献   

7.
This study reports the onset of the Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes that was investigated using an in situ bending beam method (BBM). The phase transformation during lithium insertion/extraction could be detected using the BBM technique. The phase transformation between the cubic and tetragonal phases was depicted by the larger value of the compressive or tensile differential strain, which is consistent with a well-known phase transformation between those phases in 3 V LiMn2O4. The cyclic deflectograms and cyclic voltammograms were obtained simultaneously. The potential ranges responsible for the Jahn-Teller distortion in 4 V range, which takes place at the electrode surface, was determined by the charge versus. differential strain (dε/dQ) curve. The onset of the Jahn-Teller distortion was observed at the end of the cathodic scan, and the relaxation of the Jahn-Teller distortion was observed at the beginning of anodic scan. Furthermore, the onset of the Jahn-Teller distortion was found to be dependent on the lithium ion insertion rate, which was controlled by the scan rate.  相似文献   

8.
A survey of the electrochemical stability of electrostatic spray deposited thin film of LiMn2O4 was performed in LiClO4-EC-PC, LiBF4-EC-PC, and LiPF6-EC-PC solutions at 55 °C. The solution resistance, the surface film resistance, and the charge-transfer resistance were all found to depend on the electrolyte composition. Among the LiX-salts studied, the lowest charge transfer-resistance, and surface layer resistance were obtained in LiBF4-EC-PC solution. There is no major influence of the electrolyte solution compositions upon lithium ion transport in the LiMn2O4 bulk at 55 °C. The diffusion coefficient of lithium in the solid phase varied within 10−10-10−8 cm2 s−1 in the three solutions. In general, it seems that in LiBF4 solutions, the surface chemistry is the most stable in the three solutions examined, and hence the electrode impedance in LiBF4 solutions was the lowest. In LiPF6 solutions, HF seems to play an important role, and thus, the electrode impedance is relatively high due to the precipitation of surface LiF.  相似文献   

9.
Novel Electrostatic Spray Deposition (ESD) technique was used to fabricate LiMn2O4 spinel thin-films. Cyclic voltammograms of both the ESD and porous laminate films show the double peaks in the 4.0 V range characteristic of the LiMn2O4 spinel materials. The porous laminates exhibit two semicircles in the impedance spectra while the ESD films show only one single semicircle. The diffusion time constant in the laminate films was typically one order of magnitude larger than that in the ESD thin-films. The apparent lithium-ion chemical diffusion coefficient in LiMn2O4 was found to be of the order of 10−9 cm2/s for both the porous laminate film and the ESD films despite the difference in the diffusion time constants.  相似文献   

10.
In this work, we examined the electrochemical behaviour of lithium ion batteries containing lithium iron phosphate as the positive electrode and systems based on Li-Al or Li-Ti-O as the negative electrode. These two systems differ in their potential versus the redox couple Li+/Li and in their morphological changes upon lithium insertion/deinsertion. Under relatively slow charge/discharge regimes, the lithium-aluminium alloys were found to deliver energies as high as 438 Wh kg−1 but could withstand only a few cycles before crumbling, which precludes their use as negative electrodes. Negative electrodes consisting solely of aluminium performed even worse. However, an electrode made from a material with zero-strain associated to lithium introduction/removal such as a lithium titanate spinel exhibited good performance that was slightly dependent on the current rate used. The Li4Ti5O12/LiFePO4 cell provided capacities as high as 150 mAh g−1 under C-rate in the 100th cycle.  相似文献   

11.
Fractal structure of a LiMn2O4 film electrode has been investigated and its fractal dimensions was determined using different electrochemical techniques, viz. cyclic voltammetry and chronoamperometry. The results obtained from both these methods are in good agreement indicating the reliability of the estimated Df. The fractal study of the LiMn2O4 film electrode suggests a complex surface with high fractal dimension. In addition, length scales of the electrode surface were also calculated.  相似文献   

12.
In this work, we report a basic study on the mechanism of lithium ion de-insertion/insertion process from/into LiMn2O4 cathode material in aqueous Li2SO4 solution using electrochemical impedance spectroscopy (EIS). An equivalent circuit distinguishing the kinetic parameters of lithium ion de-insertion/insertion is used to simulate the experimental impedance data. The fitting results are in good agreement with the experimental results and the parameters of the kinetic process of Li+ de-insertion and insertion in LiMn2O4 at different potentials during charge and discharge are obtained using the same circuit. The results indicate that the de-insertion/insertion behavior of lithium ions at LiMn2O4 cathode in Li2SO4 aqueous solution is similar to that reported in the organic electrolytes. The charge transfer resistance (Rct), warburg resistance, double layer capacitance and chemical diffusion coefficient (DLi+) vary with potentials during de-insertion/insertion processes. Rct is lowest at the CV peak potentials and the important kinetic parameter, DLi+ exhibits two distinct minima at potentials corresponding to CV peaks during de-insertion–insertion and it was found to be between 10−8 and 10−10 cm2 s−1during lithium de-insertion/insertion processes.  相似文献   

13.
Lithium transport through fractal Li1−δCoO2 film electrode was investigated in a 1 M lithium perchlorate (LiClO4)-propylene carbonate (PC) solution by analysis of current transient based upon fractal theory. For this purpose, two kinds of Li1−δCoO2 films were deposited by rf magnetron sputtering method on the substrates with different roughnesses. From the analysis of AFM image by the triangulation method, it was found that two Li1−δCoO2 film electrodes have the self-similar scaling properties with different spatial outer cut-off ranges. From the analysis of the potentiostatic current transient, it was recognised that the cell-impedance-controlled constraint at the electrode surface is changed to the real potentiostatic boundary condition (diffusion-controlled constraint) when the applied potential step exceeds a critical value and simultaneously the internal cell resistance is below a certain value in the region of single-β-phase. In addition, from the comparison between the cathodic current transients obtained from two fractal Li1−δCoO2 film electrodes, it was experimentally confirmed that the current transient shows the generalised Cottrell behaviour before the temporal outer cut-off of fractality, followed by a linear relationship with the slope of −0.5 after the temporal outer cut-off of fractality, when the real potentiostatic boundary condition is maintained at the electrode surface.  相似文献   

14.
Sub-micro spinel-structured LiMn1.5Ni0.5O4 material was prepared by a spray-drying method. The electrochemical properties of LiMn1.5Ni0.5O4 were investigated using Li ion model cells, Li/LiPF6 (EC + DMC)/LiMn1.5Ni0.5O4. It was found that the first reversible capacity was about 132 mAh g−1 in the voltage range of 3.60-4.95 V. Ex situ X-ray diffraction (XRD) analysis had been used to characterize the first charge/discharge process of the LiMn1.5Ni0.5O4 electrode. The result suggested that the material configuration maintained invariability. At room temperature, on cycling in high-voltage range (4.50-4.95 V) and low-voltage range (3.60-4.50 V), the discharge capacity of the material was about 100 and 25 mAh g−1, respectively, and the spinel LiMn1.5Ni0.5O4 exhibited good cycle ability in both voltage ranges. However, at high temperature, the material showed different electrochemical characteristics. Excellent electrochemical performance and low material cost make this spinel compound an attractive cathode for advanced lithium ion batteries.  相似文献   

15.
A composite lithium battery electrode of LiMn2O4 in combination with a gel electrolyte (1 M LiBF4/24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. −3<T<56 °C. For analysis of EIS data, a mathematical model taking into account local kinetics and potential distribution in the liquid phase within the porous electrode structure was used. Reasonable values of the double-layer capacitance, the exchange-current density and the solid phase diffusion were found as a function of temperature. The apparent activation energy of the charge-transfer (∼65 kJ mol−1), the solid phase transfer (∼45 kJ mol−1) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol−1), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn2O4.  相似文献   

16.
We reported here on the synthesis, the crystal structure and the study of the structural changes during the electrochemical cycling of layered LiNi0.1Mn0.1Co0.8O2 positive electrode material. Rietveld refinement analysis shows that this material exhibits almost an ideal α-NaFeO2 structure with practically no lithium-nickel disorder. The SQUID measurements confirm this structural result and evidenced that this material consists of Ni2+, Mn4+ and Co3+ ions.Unlike LiNiO2 and LiCoO2 conventional electrode materials, there was no structural modification upon lithium removal in the whole 0.42 ≤ x ≤1.0 studied composition range. The peaks revealed in the incremental capacity curve were attributed to the successive oxidation of Ni2+ and Co3+ while Mn4+ remains electrochemically inactive.  相似文献   

17.
Lithium transport through vanadium pentoxide xerogel film electrode has been investigated in a 1 M solution of LiClO4 in propylene carbonate by employing potentiostatic current transient technique and ac-impedance spectroscopy. From the comparison of the initial current experimentally measured with those initial currents theoretically calculated from the Ohm’s law and the Cottrell equation, it was confirmed that the cell-impedance-controlled constraint at the electrode surface is changed to the real potentiostatic boundary condition (diffusion-controlled constraint) when the potential step exceeds a critical value over the whole range of the lithium content. It was also found that the slope of the logarithmic current transient obtained at the lithium contents above 0.4 positively deviates in absolute value from 0.5 even under the real potentiostatic boundary condition, but the phase angle of the diffusion impedance under the semi-infinite diffusion condition negatively deviates in absolute value from 45° with increasing lithium content. With the aid of the X-ray diffractometry, the anomalous behaviours of the current transient and the diffusion impedance were discussed in terms of lithium transport through the interlayers with widely distributed spacings across the quasi-ordered xerogel film electrode. Furthermore, the current transient theoretically determined by employing the concept of interlayer spacing distribution coincided fairly well in form with that current transient experimentally measured.  相似文献   

18.
The LiMn2O4 electrode materials were synthesized by the conventional-hydrothermal and microwave-hydrothermal methods. The electrochemical performances of LiMn2O4 were studied as supercapacitors in LiNO3 electrolyte and lithium-ion battery cathodes. The microwave-hydrothermal method can synthesize LiMn2O4 electrode materials with reversible electrochemical reaction in a short reaction time and low reaction temperature than conventional-hydrothermal route. The capacitance of LiMn2O4 electrode increased with increasing crystallization time in conventional-hydrothermal route. The results showed that LiMn2O4 supercapacitors had similar discharge capacity and potential window (1.2 V) as that of ordinary lithium-ion battery cathodes. In LiNO3 aqueous electrolyte, the reaction kinetics of LiMn2O4 supercapacitors was very fast. Even, at current densities of 1 A/g and 5 A/g, aqueous electrolyte gave good capacity compared with that in organic electrolyte at a current density of 0.05 A/g.  相似文献   

19.
The stress changes Δσ generated during lithium transport through the sol-gel derived LixMn2O4 film electrodes annealed at 773 and 873 K were quantitatively determined as a function of the lithium stoichiometry x using a laser beam deflection method (LBDM). Δσ generated during a real potential step between an initial electrode potential and a final applied potential was uniquely specified by the Δσ versus x curve. The LixMn2O4 film annealed at 773 K for 24 h (low temperature (LT)-LixMn2O4) showed larger capacity than the LixMn2O4 film annealed at 873 K for 6 h (high temperature (HT)-LixMn2O4) and this result is ascribed to the fact that the smaller the grain size is, the more increases the electrochemically active area of the film electrode. From the analysis of the normalised Δσ transient measured simultaneously along with the cyclic voltammogram in the potential range of 2.5-3.4 VLi/Li+, it is found that normalised Δσ generated in the LT-LixMn2O4 was smaller than that in the HT-LixMn2O4 during the lithium intercalation/de-intercalation around 3.0 VLi/Li+ region. This result gives an experimental evidence for the fact that the Jahn-Teller distortion is suppressed by the increase in the average oxidation state of manganese with decreasing in annealing temperature.  相似文献   

20.
The electrochemical behavior of a commercial LiCoO2 with spherical shape in a saturated Li2SO4 aqueous solution was investigated with cyclic voltammetry and electrochemical impedance spectroscopy. Three redox couples at ESCE = 0.87/0.71, 0.95/0.90 and 1.06/1.01 V corresponding to those found at ELi/Li+=4.08/3.83, 4.13/4.03 and 4.21/4.14 V in organic electrolyte solutions were observed. The diffusion coefficient of lithium ions is 1.649 × 10−10 cm2 s−1, close to the value in organic electrolyte solutions. The results indicate that the intercalation and deintercalation behavior of lithium ions in the Li2SO4 solution is similar to that in the organic electrolyte solutions. However, due to the higher ionic conductivity of the aqueous solution, current response and reversibility of redox behavior in the aqueous solution are better than in the organic electrolyte solutions, suggesting that the aqueous solution is favorable for high rate capability. The charge transfer resistance, the exchange current and the capacitance of the double layer vary with the charge voltage during the deintercalation process. At the peak of the oxidation (0.87 V), the charge transfer resistance is the lowest. These fundamental results provide a good base for exploring new safe power sources for large scale energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号