首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
齿轮作为一种重要的传动部件,直接影响设备的性能和稳定,因此关于齿轮精度评价的研究显得尤为重要。针对传统齿距偏差采用局部点测量方法的不足,提出了一种基于齿廓迹线的齿距偏差评价方法,这种齿距评价与齿廓偏差有关,齿廓偏差由Mahr891E齿轮测量中心测得。利用转角偏差评价齿距,基于齿轮齿廓迹线上所有点对转角偏差进行最小二乘拟合,也为齿距偏差的研究提供了一种新思路。最后提供了该方法与齿距仪测量结果的对比。结果表明,基于齿廓迹线的齿距偏差可以很好评价实际齿距,结果具有一般性。  相似文献   

2.
小模数齿轮齿槽间隙小,接触式测量难度高,且易损坏测头,本文主要研究基于视觉的未知参数小模数齿轮的齿距偏差和齿廓偏差测量。基于亚像素数字图像处理技术定位齿轮测量基准,即齿轮几何中心,并测量得到齿数、模数、齿顶圆直径和齿根圆直径;依据齿轮精度标准ISO1328-1:2013中偏差项目定义,给出了基于视觉测量的齿轮齿距偏差和齿廓偏差评定方法,开发了小模数齿轮视觉测量数据处理软件。对模数为0.5 mm的渐开线圆柱直齿轮进行了齿距和齿廓偏差视觉测量试验,并与齿轮测量中心的测量结果对比,左右齿面测量结果的绝对误差最大为4μm,最小为1μm,评定齿轮精度等级均为8级。本文给出的未知参数小模数齿轮视觉测量系统和偏差评定方法可在一定范围内用于小模数齿轮测量。  相似文献   

3.
张白  林家春 《机械传动》2019,43(10):146-150
为了测量特大型齿轮齿距偏差,提出了基于激光跟踪仪的特大型直齿轮齿距测量新方法。利用激光跟踪仪的大空间测量能力测量齿轮齿槽,分别获得被测特大型直齿轮相邻两条齿距误差曲线。由于被测齿轮直径超过6 000 mm,可以根据点到直线距离公式近似计算单个齿距误差。首先,分析了传统方法下基于激光跟踪仪构建齿轮工件坐标系后的齿距测量模型,并根据特大型直齿轮的特点,提出了基于激光跟踪仪的无坐标系特大型直齿轮齿距误差测量模型。测量模型回避了特大型齿轮工件坐标系的建立,直接对齿槽进行双面接触测量;通过对两条齿槽测量直线进行误差评定即可获得单个齿距最大误差与单个齿距平均误差,通过转站测量实现齿距累积总偏差的测量;最后,采用蒙特卡罗法对不同测量方法的测量不确定度进行仿真分析,得出系统测量不确定度。实验结果表明,提出的基于激光跟踪仪的特大型直齿轮齿距偏差测量方法满足直径6 000 mm以上的8级精度特大型齿轮的单个齿距偏差测量要求,满足直径6 000 mm以上的10级精度特大型齿轮的齿距累积总偏差测量要求。  相似文献   

4.
文中以一种大型齿轮为研究对象,提出了基于激光跟踪仪的测量齿距偏差和齿距累积偏差的相对测量法。与常规的测量方法相比,该方法扩大了大型齿轮齿距偏差和齿距累积偏差的测量范围。文中论述了相对测量法的原理,推导了齿距偏差和齿距累积偏差的计算模型,解决了大型齿轮齿距偏差和累积偏差的测量难题。该测量方法可以有效评估齿轮齿距偏差和齿距累积偏差,其测量系统精度可达到0.01 mm/m。  相似文献   

5.
锥齿轮齿距及齿形偏差测量与分析方法   总被引:2,自引:0,他引:2  
研究了基于齿轮测量中心的锥齿轮齿距偏差和齿形偏差测量与分析方法及其实现技术。该方法应用齿轮啮合理论,根据锥齿轮齿面成形方法,建立了齿面几何参数计算模型;在齿面上建立测量网格,控制齿轮测量中心四轴运动使齿面和测头于测量网格点接触,采集实际坐标轴及测头读数;应用B样条法构造实际齿面,计算其齿形偏差。在此基础上,开发了基于哈量集团公司制造的390X系列齿轮测量中心的实现软件系统。30家锥齿轮制造企业实际应用表明,该软件系统为提高锥齿轮精度、减小齿形偏差提供了先进的测量与分析手段。  相似文献   

6.
超精密齿轮精度要求高,使用接触式测量容易造成齿面损伤,影响精度,且只有少部分的接触式测量设备能达到微米级别,测量效率低,所以因为效率、精度的原因无法满足超精密齿轮的测量需求;故从诸多测量方法中选取了线结构光测量系统,对基于线结构光的超精密齿轮齿距偏差测量进行了分析研究.根据IS01328-1:2013《圆柱齿轮精度标准》中齿距偏差项目的 定义,通过线结构光测量系统对模数为3.0 mm,齿数为30的2级精度渐开线圆柱直齿轮样板进行了齿距偏差测量,得到了左、右齿面的单个齿距偏差分别为1.71 μm和1.73 μm,以及左、右齿面的齿距累积总偏差分别为5.43 μm和5.70 μm,并分别与IS01328-1:2013和GB/T 10095.1-2008中单个齿距偏差和齿距累积总偏差的许用值进行对比,证明了该线结构光测量系统能够实现超精密齿轮的非接触式测量.  相似文献   

7.
超精密齿轮精度要求高,使用接触式测量容易造成齿面损伤,影响精度,且只有少部分的接触式测量设备能达到微米级别,测量效率低,所以因为效率、精度的原因无法满足超精密齿轮的测量需求;故从诸多测量方法中选取了线结构光测量系统,对基于线结构光的超精密齿轮齿距偏差测量进行了分析研究.根据IS01328-1:2013《圆柱齿轮精度标准》中齿距偏差项目的 定义,通过线结构光测量系统对模数为3.0 mm,齿数为30的2级精度渐开线圆柱直齿轮样板进行了齿距偏差测量,得到了左、右齿面的单个齿距偏差分别为1.71 μm和1.73 μm,以及左、右齿面的齿距累积总偏差分别为5.43 μm和5.70 μm,并分别与IS01328-1:2013和GB/T 10095.1-2008中单个齿距偏差和齿距累积总偏差的许用值进行对比,证明了该线结构光测量系统能够实现超精密齿轮的非接触式测量.  相似文献   

8.
齿轮测试技术是提高齿轮制造质量的关键因素,相对于传统齿轮精度指标,全齿面精度能够全面反映齿轮加工质量。通过齿轮测量中心对全齿面偏差进行测量,采用双三次B样条对偏差数据进行曲面拟合;通过最小二乘原理对全齿面偏差分离成1阶偏差和2阶偏差,分别反映齿面偏差的倾斜及弯曲程度。对于不同齿轮加工工艺,通过齿面1阶偏差和2阶偏差可以分析齿轮加工误差源,并可对加工工艺进行指导。  相似文献   

9.
相对法测量齿轮齿距累积误差△F_p,属于间接测量方法,即齿距累积误差由齿距偏差累加起来而求得。而对齿距偏差的测量是直接观测值△i,通过计算得到。由于直接观测值有测量误差,在计算齿距累积误差时,这些测量误差也要累加起来,成为齿距累积误差的测量方法误差。该测量方法误差将影响△F_p的测量精度。 众所周知,K个齿距偏差的累积值为:  相似文献   

10.
针对直齿轮齿距偏差测量难度大、测量精度低的现状,文章采用机器视觉技术对直齿轮的齿距偏差进行检测。通过机器视觉系统获取齿轮图像,利用改进的Zernike矩亚像素边缘检测算法进行齿轮边缘检测;利用重心法求取齿轮几何中心,利用统计连通域法求取齿数,利用凸包法计算齿顶圆半径并计算获取齿根圆半径,通过齿顶圆公式计算模数,通过分度圆公式计算分度圆半径;依据测量结果给出了齿轮齿距偏差的测量方法,通过测量结果与直齿轮实际尺寸对比和分析,证明了该算法的合理性,可以实现齿距偏差的有效检测。  相似文献   

11.
A new type of master gear, the Gauge Block Gear (GBG), was developed for the performance verification of coordinate measuring machines (CMMs), for the specific task of pitch and chordal tooth thickness measurement. Its main characteristic is the replacement of the teeth with gauge blocks to achieve direct traceability of the chordal tooth thickness. Mathematical models for the geometrical definition of cylindrical gears with involute toothing, data evaluation, and assessment of the task-related uncertainty, were formulated, and measuring strategies for CMMs were designed and implemented. The GBG was calibrated using the swing round method, and measurement uncertainties on chordal tooth thickness and total pitch deviation Fp were determined to be 0.9 μm and 1.4 μm, respectively. Assembly stability and flexibility of the artefact were verified with measurements performed on a CMM provided with general purpose software, one with dedicated gear measuring software, a form tester, and a conventional gear measuring center. Results confirm the correctness of the mathematical models developed to analyze CMM results as well as their compatibility with existing approaches. The Gauge Block Gear provides, therefore, for direct traceability of the chordal tooth thickness and allows the definition of the task-specific uncertainty of pitch and tooth thickness measurements of cylindrical gears as basis for the assessment of the metrological capability of measuring machines.  相似文献   

12.
In order to improve the machining accuracy of spiral bevel gear,difference surface was adopted to characterize its global form deviations quantifiably and correct its deviations.The theoretical tooth s...  相似文献   

13.
表征渐开螺旋齿轮的特征线有多种,广为熟知的是几何意义明确的渐开线和螺旋线。其实齿面上还有法向啮合齿形、接触线等工程价值突出的其他特征线。但特征线增多带来了两个问题,一是复杂的特征线方程彼此不关联,数学上缺乏统一性;二是除了渐开线和螺旋线,其他特征线没有测量手段,缺乏可测性。据渐开线齿轮传动的特点,将齿面特征线映射到啮合平面里,发现齿面上各条特征线在啮合平面里都有各自对应的二维直线,以此建立直线模型统一表达了齿面各种特征线;基于齿轮三维误差测量数据和特征线统一模型,提出了各种特征线偏差的提取方法,应用于测量实践,通过与通用齿轮仪器测量的渐开线偏差和螺旋线偏差作比对,证明了特征线统一模型及特征线偏差提取方法的有效性和实用性,解决了齿面复杂特征线的可测性问题。同时,齿轮特征线统一模型在齿轮工艺误差溯源、传动性能预报等方面也有重要应用价值。  相似文献   

14.
首次通过对研齿过程的轮齿接触仿真,齿面瞬时接触应力、齿面滑动系数与齿面研磨概率的研究分析,建立了齿面综合研磨率的评价指标,并进行了研齿性能试验。结果表明,准双曲面齿轮齿面中部研磨要严重一些,靠齿根稍重些,靠齿顶稍轻些,这与传动误差变化规律一致。研齿能一定程度上降低齿形、齿距误差,尤其对轮齿的实际啮合精度改善明显,振动噪声均有较大下降。  相似文献   

15.
传统渐开线齿轮综合偏差的检测常采用齿轮单面啮合法和齿轮双面啮合法。由于2种方法的测量原理及测量参数等不同,需采用齿轮单啮仪和齿轮双啮仪2种仪器分别进行测量,从而分别获得被测齿轮的切向综合偏差和径向综合偏差,2种偏差无法通过一次啮合检测得到。针对传统齿轮综合检测的不足,设计了一种由2个特殊半齿测量齿轮组成的新型测量齿轮,提出了一种新的齿轮综合偏差测量原理,并给出了其综合偏差结果的评定方法。该测量齿轮与被测齿轮通过一次类单面啮合测量,获得产品齿轮两侧齿面的切向综合偏差和径向综合偏差,明显提高了渐开线齿轮综合偏差的检测效率,降低了在测量设备上的投资。  相似文献   

16.
针对非圆齿轮加工中,由齿坯节曲线曲率变化所引起的分次进刀过程中齿面加工余量分布不均的问题,提出一种匀化非圆齿轮齿面加工余量的工艺方法。以非圆齿轮插削工艺为研究对象,基于插齿加工原理,对齿面加工余量分布不均的成因进行了分析;在此基础上建立了非圆齿轮匀化工艺插削联动模型,通过实时调整插刀与齿坯的几何位置关系,实现了非圆齿轮齿面加工余量的匀化;开发了非圆齿轮插齿CAM系统,利用CAM系统对齿面加工余量匀化工艺进行了仿真验证,仿真结果表明,所提工艺方法正确、可行;将匀化工艺集成到自主开发的齿轮加工数控系统中,进行了非圆齿轮插削加工试验,试验结果表明,所提工艺方法能够有效匀化齿面加工余量;对加工出的非圆齿轮齿面进行了三维形貌检测,检测结果表明,所提工艺方法能够显著提高非圆齿轮的加工精度与表面质量。  相似文献   

17.
非圆齿轮传动具有广泛的应用场景。针对非圆齿轮传动,采用齿轮啮合原理和材料力学等原理及方法,提出了大重合度非圆齿轮设计方法。探讨了非圆齿轮传动原理和节曲线构建方法,计算了其节曲线曲率半径和重合度方程。建立了不同重合度非圆齿轮轮齿时变啮合刚度与载荷分配率计算模型,推导了不同重合度非圆齿轮齿根弯曲应力方程。探讨了不同结构参数下非圆齿轮副重合度、时变啮合刚度、时变载荷分配率及齿根弯曲应力变化规律,确定了轮齿所受最大载荷位置。开展了不同重合度非圆齿轮齿根弯曲应力仿真分析和实验测量,与理论计算结果进行了对比分析,最大误差分别约为4.8%和5.9%,验证了理论方法的合理性与正确性,为大重合度非圆齿轮传动的工程应用奠定了基础。  相似文献   

18.
This paper presents surface-profiling based gear pitch deviation measurement for an involute spur gear. A rotary profiling system, which consists of an air-bearing spindle and a displacement sensor with a diamond stylus, is employed to measure gear pitch deviation. In measurement of gear pitch deviation, an eccentric error between a gear axis and a motion axis of the rotary stage in the profiling system would affect accuracy of gear profile measurement. In this paper, at first, the influence of the eccentric error on measurement of gear pitch deviation is estimated in computer simulation based on a geometric model of the profiling system. After that, a new scanning method named “opposite-direction dual scanning method” is proposed so that a steep profile of gear flank surface with a local slope of up to 90° can be measured by the developed rotary profiling system. For compensating distortions in the measured gear tooth profile, which are induced not only by the eccentric error but also by a probe offset introduced by the proposed scanning method, a self-calibration and compensation method is applied. To verify the feasibility of the proposed method, measurement of gear pitch deviation of a master involute spur gear with a certificate data is carried out. Measurement uncertainty of the proposed method is also analyzed.  相似文献   

19.
螺旋锥齿轮点接触齿面生成法   总被引:2,自引:0,他引:2  
提出一种能直接生成点接触,满足啮合配对要求的齿面方法,该方法利用齿面接触分析设计齿面,为齿轮NC加工运动计算提供新的途径。  相似文献   

20.
减变速一体化齿轮啮合原理的研究   总被引:3,自引:1,他引:3  
突破常规非圆齿轮副的节曲线都是非圆形的限制,提出由普通直齿圆柱齿轮和非圆面齿轮组成的传动机构,可实现任意的减变速一体化传动,从而最大限度地简化传统减变速装置的传动结构,节省传动空间,提高传动效率。提出用非圆曲线代替普通面齿轮节圆的设想,根据传动过程中两齿轮节曲线之间进行纯滚动的原理,建立圆柱齿轮的空间节曲线方程,从而揭示正交轴圆柱齿轮与非圆面齿轮的传动机理;将圆柱齿轮与非圆面齿轮的传动比分解成减速比和变速比两部分,建立几何参数与两部分传动比的对应关系,可方便地设计任意减变速传动规律。根据齿轮空间啮合原理,建立由标准齿轮插刀包络非圆面齿轮的齿面模型,可为进一步轮齿几何特性分析及强度计算提供理论基础。计算出不同设计参数下非圆面齿轮副的传动比,分析了其独特的传动性能,并利用数字化制造仿真技术模拟标准齿轮插刀加工非圆面齿轮的过程,得到与齿廓数学模型完全吻合的齿面数据,从而验证了新型齿轮的传动机理及齿面模型的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号