首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
压电陶瓷精密转动平台的转角精度测量   总被引:1,自引:2,他引:1  
提出了一种亚角秒精度的转角测量方法。利用ZYGO数字干涉仪测量压电陶瓷转动平台驱动待测标准平面镜偏转前后镜子面形精度的PV(Peak Valley)值,二者的差值除以待测标准平面镜的直径,其结果近似等于压电陶瓷转动平台转动的角度。通过测量与误差分析,验证了压电陶瓷转动平台的转角精度小于1 μrad(0.2″),而测量的总误差和压电陶瓷转动平台移动的角度大小有关,移动距离越大,产生的误差越大,但其相对误差小于1%。本测量方法证明压电陶瓷精密转动平台转角精度达到了极紫外太阳望远镜(EUT)0.8″的角分辨率的要求。  相似文献   

2.
为了提高数控回转工作台的控制精度,利用高精度时栅角位移传感器作为测角元件,实时测出转台的实际角位移并将其作为反馈信号,以ARM处理器做为数控系统的核心器件,实现了全闭环的转台数控系统。该系统通过机械传动比细分的方法,解决了在步进电动机步距角细分不足的情况下,实现高精度控制。实验证明该系统具有运行稳定,定位精度高等优点,在机加工领域有较好的应用前景。  相似文献   

3.
张昕 《机械制造》2014,(7):73-75
以IC划片机数控轴位移空间误差的分析为基础,采用激光干涉仪测量小步距直线位移精度,并应用4线分步体对角线法测量空间位移误差,进而提出了双向小步距直线位移与空间误差补偿方法。将该补偿方法应用于划片机,划片步距精度和切割深度的控制精度能提高50%以上。  相似文献   

4.
为了实现对精密减速器输入端和输出端角位移的精密测量,建立精密减速器角位移测量系统。对该系统的机械结构、角度测量及标定方法、基于非线性最小二乘法的误差补偿模型进行研究。通过"立式筒状"结构和圆光栅角度传感器"前置"避免了传统检测仪的弱刚度结构和轴系形变对角度测量造成的影响。使用光电自准直仪与24面棱体结合的方式离散标定圆光栅角度传感器的角位移测量误差,研究基于谐波分析的误差补偿方法,对角坐标进行补偿,进一步消除误差。实验结果显示,通过优化检测仪的结构设计,角位移测量精度达到±7″;误差补偿后,角位移最终测量精度达到±2″,满足减速器角位移测量的高精度要求,对类似测角系统也有参考价值。  相似文献   

5.
一种宏微双重驱动精密定位机构的建模与控制   总被引:28,自引:18,他引:10  
提出一种宏微双重驱动精密定位机构,采用高性能直线电机直接驱动宏动平台,实现系统大行程微米级精度定位;安装在宏动平台上的压电陶瓷驱动微动平台,实现纳米级的分辨率和定位精度,以高频响动态补偿系统的定位误差;采用精密光栅尺反馈微动平台输出端的位置信号,实现定位机构的全闭环反馈控制。在分别建立宏动、微动、宏微机构模型的基础上,提出复合型宏动控制和模糊自校正PID微动控制的宏微控制策略。实验研究表明:系统的动态和稳态性能良好,该定位机构的最大工作行程100 mm,稳定时间小于40 ms,重复定位精度10 nm。  相似文献   

6.
提出一种用于加速度计静态标定的精密倾斜平台装置,利用直线电机驱动,将直线电机的线位移转换为台面的角位移。建立了装置的理论模型并介绍了其测控系统,分析了影响定位精度的因素。台面静态误差主要受温度、重力影响;制造和装配误差通过线位移与角位移的转换关系影响系统精度;动态误差主要受轴承跳动影响,导轨运动的误差可以忽略不计。通过实验研究得出影响系统精度的主要原因,并给出了误差补偿的方法。结果显示误差主要来源于电机和转动部件的装配误差,经软件补偿后,在-3 600″~+3 600″,定位误差均小于±2″。  相似文献   

7.
为了解决应用于关节型三维激光传感器的小型谐波转台角度定位精度标定的问题,提出了一种基于Renishaw双频激光干涉仪的单自由度小型谐波转台旋转角度测量和补偿方法。首先依据干涉仪角度测量原理和光路调节方法,建立了测量光路系统,分析了回转台装配误差对角度测量精度的影响并进行了有效调整,而后提出了小型谐波转台360°范围角度标定的实验方案,最后通过曲线拟合的方法分析了转台转角误差的测量数据,总结转台转角误差随位置改变的变化规律,并将误差补偿函数嵌入控制器中,对转台的每次运动进行实时有效补偿。实验结果表明:使用该标定补偿方法能够将小型谐波转台的定位精度提高85%以上,补偿后的定位误差小于10″。采用该方法能够对小型谐波转台进行小间隔360°标定,标定后转台满足激光传感器空间精确定位的要求。  相似文献   

8.
针对大部分工业机器人结构需要满足Pieper准则无法直接补偿所有运动学参数误差的问题,提出一种两步误差补偿方法。首先,基于修正的D-H法和微分运动学建立机器人定位误差模型,建立机器人末端绝对定位误差与运动学参数误差之间的表达式;其次,利用最小二乘法迭代求解出运动学参数误差,并将可直接补偿的运动学参数误差直接补偿到机器人D-H配置参数中,将剩余的其它运动学参数误差转换为关节转角补偿值进行间接补偿;最后,搭建实验平台,在川崎RS010NA六自由度工业机器人上进行两步误差补偿实验验证。实验结果表明,通过两步误差补偿后机器人末端平均绝对定位误差由5.419 4 mm下降到1.160 5 mm,平均绝对定位精度提高约80%,该方法有效地提高了机器人的绝对定位精度。  相似文献   

9.
ZJY—1转角检测仪系根据电液脉冲马达之步进电机的步距角精度检测需要,以圆光栅为转换元件,应用电子计算及显示技术,在检测过程中,用数字直接按角度单位显示步进电机等被测电机的转角或转角误差。仪器外形见图一。一、主要技术参数 1、角度最大容量:999°59.5′ 2、误差最大容量:9°59.5′ 3、最小读数单位:0.5′ 4、脉冲当量:0.5′/脉冲 5、电源: 5V、 20V、 15V、-15V、 1.5V 二、仪器功能 1、最大误差测量:根据被测电机的标准步距,选择“标准步距”及“予选步数”,按“起动”按钮后,仪器按“清除”→“电机走步”→“求差”三个节拍循环工作。自动循环达到予选步数后,自动仃止。自动测示最大误差值。  相似文献   

10.
宏/微双驱动平台是一种用于微切削加工的高精度切削平台,其定位精度受多种因素影响。为提高宏/微双驱动定位运动平台的定位精度,提出基于BP神经网络进行宏/微双驱动运动平台定位误差预测的方法。测量运动平台的定位精度,从而建立BP神经网络误差预测模型,并运用该模型对宏/微双驱动运动平台进行定位误差预测试验,最终证明BP神经网络定位误差预测模型精度高、抗变换性能好,适用于对宏/微双驱动运动平台的定位误差进行误差预测及补偿,使得宏/微双驱动平台达到10nm级精度设计要求。  相似文献   

11.
精密转台角分度误差补偿   总被引:1,自引:0,他引:1  
为了修正精密转台中由圆光栅安装偏心、倾斜等引起的角分度误差,提出一种基于稀疏分解的角分度误差补偿方法。首先,分析了圆光栅安装偏心、倾斜等对精密转台角分度误差的影响。然后,根据圆光栅测角误差中不同阶次误差项的特性,结合稀疏分解思想与谐波分析建立了角分度误差补偿模型,对转台的角分度误差进行补偿。最后,搭建试验平台,采用提出的角分度误差补偿模型对精密转台角分度误差进行修正,验证该方法的有效性。试验结果表明:该方法能够将角分度精度提高2个数量级,对角分度误差最大值为90.85"的转台进行误差补偿后,能够使角定位误差的最大值减小到0.64"。采用该方法进行误差补偿后,能够显著提高角度定位精度,结果满足精密转台角位移的高精度测试要求。  相似文献   

12.
大型精密转台高精度角度微驱动装置的研制   总被引:2,自引:0,他引:2  
针对用于标定和检测的大型精密转台(要求其定位误差≤±0.5″),研制了高精度角度微驱动装置。介绍了转台的总体结构,给出了角度微驱动装置的驱动原理和构成。该角度微驱动装置主要通过一个角位移转换机构把精密直线位移转化为精密角位移来实现高的角度分辨率,其在驱动转台旋转的过程中几乎不给转台带来轴向力和径向力,因此不影响转台的轴系精度。为了满足定位要求,转台设计采用了粗精结合、二次定位的方法,即先采用力矩电机进行粗定位,然后使用角度微驱动装置来实现精定位。最后,从理论上计算了角度微驱动装置的分辨率并进行了测试和应用验证,证明此角度微驱动装置的分辨率优于0.08″,满足转台定位精度要求。  相似文献   

13.
晶圆对心转台亚微米级径跳误差补偿方法   总被引:1,自引:0,他引:1  
为了消除转台径跳误差对晶圆预对准台重复性定位精度的影响,提出径跳误差的在线检测与补偿方法。转台上方并与之一起旋转的心轴作为转台径跳的检测元件,电涡流传感器测量心轴径向距离,其测量值由固定误差和径跳误差组成,借助集合平均法或者转台径跳特性,离线求解固定误差,据此在线工作时从电涡流传感器数据中分离出径跳误差。利用该误差对激光位移传感器检测的晶圆边缘数据进行径跳误差补偿,分析误差特性,据此简化补偿算法。试验证明,径跳误差补偿方法的使用提高了系统的预对准精度,并最终使系统达到了微米级的定位精度要求。  相似文献   

14.
光纤陀螺标度因数测试方法分析   总被引:2,自引:0,他引:2       下载免费PDF全文
标度因数是光纤陀螺参数测试中重要的测试之一,标度因数的测试精度在导航应用中具有重要意义。通过对角速率法和角增量法两种标度因数测试方法进行理论分析与比较得到,角速率法主要误差来源是安装误差、转台的速率精度等;而角增量法的误差来源则主要是转台的定位精度和转台倾斜等。通过计算两种方法下标度因数的非线性度和不对称度大小来比较标度因数的测试准确度,然后再通过随机位置动态运动实验和导航实验来验证两种方法测得的标度因数精度,最终证明角增量法测得陀螺的标度因数精度优于角速率法测得的标度因数,且比角速率法高1个数量级。  相似文献   

15.
精密定位工作台温度的变化直接影响工作台的定位精度。通过建立精密定位工作台热膨胀模型,分析工作台在不同固定方式下的温度变化对定位精度的影响,给出了基于温度精密测量的工作台定位精度实时补偿方法,并通过实验对补偿方法的效果进行了验证,证明方法有十分明显的补偿效果。  相似文献   

16.
为了保障转台定位误差谐波补偿准确性,针对一种谐波误差函数计算方法开展研究。 首先分析了转台定位误差谐波补 偿方法,阐述了基于坐标旋转数字计算方法(CORDIC)的谐波误差函数计算原理可行性;针对算法原理误差进行分析,分别建 立了与迭代次数 n、数据位宽 b 的量化模型,明确了算法在谐波补偿值计算过程的总量化误差;根据计算精度要求对 n 和 b 取值 进行设计,在现场可编程门阵列(FPGA)中实现谐波误差函数计算并进行实时误差补偿。 以谐波误差函数理论值为参考,仿真 证明了计算方法的有效性;以自制电路板为实验平台,证明了计算方法的总量化误差模型正确性;搭建转台测试平台验证定位 误差补偿效果,实验结果证明采用本文提出的谐波误差函数计算方法进行补偿,使转台定位精度由 29. 0"提高至 5. 3" 。  相似文献   

17.
一种新型大中心孔绝对式磁编码器   总被引:1,自引:0,他引:1       下载免费PDF全文
为测量机器人关节端角度和电机端位置,研制一种基于霍尔原理的新型绝对式磁编码器,采用大中心孔结构,具有大的中心孔、体积小、结构紧凑、分辨率高、绝对式位置测量等特点。传感器由转子和定子组成,转子的磁码盘包括主码道和游标码道,定子由霍尔敏感芯片和信号调理电路板组成;根据游标计算原理,得到了传感器绝对角度的计算方法。通过仿真软件分析了转子的磁场分布和模态;为进一步提高磁编码器的输出精度,提出一种基于遗传优化算法的误差补偿模型,搭建了传感器的标定平台,实验结果表明传感器绝对定位精度可以达到0.2°,经过模型补偿后可以达到0.036°,满足机器人关节及伺服系统设计要求。  相似文献   

18.
通过对轴系回转精度的误差抵消,大导轨精度的综合修正刮研及坐标定位精度的综合修正,说明系统误差综合补偿法是精密数控机床制造中一个重要应用方向。  相似文献   

19.
《Measurement》1986,4(4):148-153
The laser interferometers for angle measurement in a wide range have been presented. These are the systems based on the modified Twyman-Green interferometer principle, constructed and tested by the author. Each modification is aimed at the optimum configuration, which should combine high accuracy and wide range simultaneously. Starting with the simple interferometer, through its various versions with beam shift compensation and diametrically placed reflectors, to the set-up which has a measuring range of 2π rad and rotational positioning of 0.04″. The final system is designed for automatic measurement of angular positions and for checking the angle standards. The error analysis common to all interferometers with rotating reflector is given.  相似文献   

20.
针对特定情况下高精密大型转台定位精度的标定问题,提出了一种采用激光跟踪仪标定的方法,首先分析影响标定方法精度的因素,通过优化测量参数及采样策略,建立基于激光跟踪仪的最优标定系统,拟合激光跟踪仪测得点所在的三维平面,通过坐标变换将测量点转换到二维平面上,拟合转换后的数据得到圆心坐标,最后计算相邻测量点与圆心连线的夹角,与理论值进行比较,从而确定转台的定位精度。实验表明,标定系统的精度满足要求。该标定方法简单可靠,提高了高精密大型转台的标定效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号