首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Strains of Saccharomyces cerevisiae isolated from Italian salami were screened for proteolytic activity in a model system containing sarcoplasmic (SMS) or myofibrillar (MMS) proteins, at 20 °C for 14 days, to evaluate the possible influence on the proteolysis of fermented sausages.SDS-PAGE revealed that 14 of the most osmotolerant strains were responsible for the extensive hydrolysis of the main myofibrillar proteins, while only one strain was able to hydrolyze sarcoplasmic proteins. Free amino acids (FAA) accumulated during proteolysis were strain-dependent with different patterns from sarcoplasmic or myofibrillar protein fraction. In general, proteolysis lead Cys, Glu, Lys and Val as the most abundant FAA in the inoculated MMS samples. Volatile compound analysis, determined by SPME-GC-MS, evidenced 3-methyl butanol in MMS, and 2-methyl propanol and 3-methyl-1-butanol in SMS as major compounds. Our findings highlight that S. cerevisiae could influence the composition in amino acids and volatile compounds in fermented sausages, with a strain-dependent activity.  相似文献   

2.
Tart cherries of ‘Early Richmond’, widely grown in Shandong (China), were fermented with six different Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, D254, D21 and GRE) to elucidate their influence on the production of volatiles and polyphenols. Acetic acid and 3-methylbutanol were found in the highest concentrations among all identified volatiles with all six yeast strains, followed by 2-methylpropanol and ethyl lactate. RA17 and GRE cherry wines were characterised by a higher amount of esters and acids. D254 wine contained a higher concentration of alcohols. With respect to polyphenols, five phenolic acids and four anthocyanins were identified among all tested samples, with chlorogenic and neochlorogenic acids, cyanidin 3-glucosylrutinoside and cyanidin 3-rutinoside being the major compounds. When using principal component analysis to classify the cherry wines according to the volatiles and polyphenols, they were divided into three groups: (1) RA17 and GRE, (2) RC212 and D254 and (3) BM4×4 and D21.  相似文献   

3.
Three different treatments involving inoculation with Schizosaccharomyces pombe YGS-5 and Saccharomyces cerevisiae G1 strains were tested with a view to reducing the amount of gluconic acid in synthetic medium. The treatments involved (a) simultaneous inoculation with S. cerevisiae and S. pombe (SpSc); (b) depletion of gluconic acid with S. pombe and subsequent inoculation with S. cerevisiae following removal of S. pombe from the medium (Sp − Sp + Sc); and (c) as (b) but without removing S. pombe from the medium (Sp + Sc). The results thus obtained were compared with those for a control treatment involving fermentation with S. cerevisiae alone (Sc). The amounts of volatile compounds quantified in the fermented media were similar with the treatments where gluconic acid was previously depleted (viz.Sp − Sp + Sc and Sp + Sc). Amino acids were used in large amounts by S. pombe during removal of gluconic acid; this affected subsequent fermentation by S. cerevisiae and the formation of byproducts. Based on the gluconic acid uptake, fermentation kinetics, volatile composition and absence of off-flavours in the fermented media, both treatments (Sp − Sp + Sc and Sp + Sc) can be effectively used in winemaking processes to remove gluconic acid from must prior to fermentation.  相似文献   

4.
The objective of this study was to examine the effects of a Saccharomyces cerevisiae live cell product and a S. cerevisiae culture product on the in vitro mixed ruminal microorganism fermentation of ground corn, soluble starch, alfalfa hay, and Coastal bermudagrass hay. In the presence of ground corn, neither concentration (0.35 or 0.73 g/L) of S. cerevisiae culture nor live cells had any effect on final pH, H2, CH4, propionate, or butyrate. The S. cerevisiae culture had no effect on acetate, but both concentrations of S. cerevisiae live cells decreased acetate and the acetate:propionate ratio. When soluble starch was the substrate, both concentrations of S. cerevisiae live cells and 0.73 g/L of S. cerevisiae culture decreased the acetate:propionate ratio. Although the treatment effects were not statistically significant, both concentrations of live cells and 0.73 g/L of the culture decreased lactate concentrations compared with the control incubations. When alfalfa hay served as the substrate, neither the S. cerevisiae culture nor the live cells had an effect on propionate, butyrate, or the acetate:propionate ratio. Both concentrations of S. cerevisiae culture decreased the final pH and in vitro dry matter disappearance, and the 0.73 g/L treatment decreased the amount of acetate. However, both treatments of S. cerevisiae live cells increased final pH and decreased acetate and in vitro dry matter disappearance. Neither yeast treatment had much effect on the Coastal bermudagrass hay fermentations. In general, both S. cerevisiae supplements seemed to have similar effects on the mixed ruminal microorganism fermentation.  相似文献   

5.
The effects of citric acid at pH values of 3.0, 4.0, and 4.5 on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures were investigated. S. cerevisiae and Z. bailii exhibited similar tolerances to citric acid, as determined by growth measurements, at all three pH values investigated. The citric-acid-induced growth inhibition of both yeast species increased with increasing pH values, indicating that the antimicrobial mechanism of citric acid differs from that of classical weak-acid preservatives. In S. cerevisiae, citric acid shifted the primary energy metabolism towards lower ethanol production and higher glycerol production, thus resulting in lower ATP production. These metabolic changes in S. cerevisiae were pH-dependent; i.e. the higher the pH, the lower the ATP production, and they may explain why growth of S. cerevisiae is more inhibited by citric acid at higher pH values. In Z. bailii, citric acid also caused an increased glycerol production, although to a lesser extent than in S. cerevisiae, but it caused virtually no changes in ethanol and ATP production.  相似文献   

6.
Knowledge of physiological behavior of indigenous tequila yeast used in fermentation process is still limited. Yeasts have significant impact on the productivity fermentation process as well as the sensorial characteristics of the alcoholic beverage. For these reasons a better knowledge of the physiological and metabolic features of these yeasts is required. The effects of dilution rate, nitrogen and phosphorus source addition and micro-aeration on growth, fermentation and synthesis of volatile compounds of two native Saccharomyces cerevisiae strains, cultured in continuous fed with Agave tequilana juice were studied. For S1 and S2 strains, maximal concentrations of biomass, ethanol, consumed sugars, alcohols and esters were obtained at 0.04 h−1. Those concentrations quickly decreased as D increased. For S. cerevisiae S1 cultures (at D = 0.08 h−1) supplemented with ammonium phosphate (AP) from 1 to 4 g/L, concentrations of residual sugars decreased from 29.42 to 17.60 g/L and ethanol increased from 29.63 to 40.08 g/L, respectively. The S1 culture supplemented with AP was then micro-aerated from 0 to 0.02 vvm, improving all the kinetics parameters: biomass, ethanol and glycerol concentrations increased from 5.66, 40.08 and 3.11 g/L to 8.04, 45.91 and 4.88 g/L; residual sugars decreased from 17.67 g/L to 4.48 g/L; and rates of productions of biomass and ethanol, and consumption of sugars increased from 0.45, 3.21 and 7.33 g/L·h to 0.64, 3.67 and 8.38 g/L·h, respectively. Concentrations of volatile compounds were also influenced by the micro-aeration rate. Ester and alcohol concentrations were higher, in none aerated and in aerated cultures respectively.  相似文献   

7.
Wines from healthy grapes supplemented with gluconic acid were subjected to biological aging under two experimental conditions. The first one was carried out under flor yeast velum as in the traditional biological aging and the second one under submerged cultures. The highest gluconic acid consumption was observed in aged wines in submerged cultures. Nine aromatic series were obtained by grouping the 48 volatile compounds quantified in wines. The aroma profile based on the aromatic series allows comparison of the changes due to the gluconic acid consumption and the changes due to the different aging conditions assayed. Only the herbaceous and fatty series showed diminished values of consequence of gluconic acid consumption. The fatty, herbaceous and roasty series show highest values, whereas the fruity, floral, solvent and medicinal series reached lower values in the submerged cultures assay. The application of the assay conditions to winemaking can reduce the gluconic acid concentration in wines obtained from rotten grapes.  相似文献   

8.
The use of non-Saccharomyces yeasts that are generally considered as spoilage yeasts, in association with Saccharomyces cerevisiae for grape must fermentation was here evaluated. Analysis of the main oenological characteristics of pure cultures of 55 yeasts belonging to the genera Hanseniaspora, Pichia, Saccharomycodes and Zygosaccharomyces revealed wide biodiversity within each genus. Moreover, many of these non-Saccharomyces strains had interesting oenological properties in terms of fermentation purity, and ethanol and secondary metabolite production. The use of four non-Saccharomyces yeasts (one per genus) in mixed cultures with a commercial S. cerevisiae strain at different S. cerevisiae/non-Saccharomyces inoculum ratios was investigated. This revealed that most of the compounds normally produced at high concentrations by pure cultures of non-Saccharomyces, and which are considered detrimental to wine quality, do not reach threshold taste levels in these mixed fermentations. On the other hand, the analytical profiles of the wines produced by these mixed cultures indicated that depending on the yeast species and the S. cerevisiae/non-Saccharomyces inoculum ratio, these non-Saccharomyces yeasts can be used to increase production of polysaccharides and to modulate the final concentrations of acetic acid and volatile compounds, such as ethyl acetate, phenyl-ethyl acetate, 2-phenyl ethanol, and 2-methyl 1-butanol.  相似文献   

9.
The possible industrial use of three previously-selected Saccharomyces cerevisiae strains (1EV, 2EV and 7EV) has been studied in musts derived from Tempranillo and Cabernet Sauvignon. The anthocyanin, pyranoanthocyanin and non-anthocyanin phenolic content, and colour characteristics of the resulting wines have been compared to those of a commercial strain. Anthocyanins were the compounds most influenced by the yeast strain. Independently of the grape variety, wines derived from 2EV presented significantly higher anthocyanin concentrations than those derived from 1EV and 7EV, which presented similar contents. With the exception of hydroxycinnamic acids and derivatives, no particular influence of the yeast strain was observed on the remaining non-anthocyanin phenolic compounds (i.e, hydroxybenzoic acids and flavanols). Pyranoanthocyanins and metabolites resulting from the alcoholic fermentation such as tyrosol and tryptophol, seemed to be more influenced by the must composition and pH, and thus, by the grape variety, than by the yeast strain.  相似文献   

10.
11.
The present research studied Saccharomyces cerevisiae yeasts isolated from Nero d'Avola grapes, collected in different areas of the Sicily region. RAPD-PCR analysis with M13 primer was used for preliminary discrimination among 341 S. cerevisiae isolates. Inoculated fermentations with S. cerevisiae strains, exhibiting different RAPD-PCR fingerprinting, revealed the impact of selected strains on volatile compound concentration. Two selected strains were used in fermentation at cellar level and the restriction analysis of mtDNA on yeast colonies isolated during fermentation was used to control strain implantation. This study represents an important step to establish a collection of indigenous S. cerevisiae strains isolated from a unique environment, such as Nero d'Avola vineyards. Different starter implantation throughout inoculated fermentation represents an additional character, which might be considered during the selection program for wine starter cultures.  相似文献   

12.
In order to establish an efficient bioethanol production system from rice straw, a new strategy to ferment the mixture of glucose and xylose by a sequential application of Saccharomyces cerevisiae and Pichia stipitis was developed, in which heat inactivation of S. cerevisiae cells before addition of P. stipitis was employed. The results showed that heating at 50°C for 6h was sufficient to give high xylose fermentation efficiency. By application of the inactivation process, 85% of the theoretical yield was achieved in the fermentation of the synthetic medium. At the same time, the xylitol production was reduced by 42.4% of the control process. In the simultaneous saccharification and fermentation of the lime-pretreated and CO(2)-neutralized rice straw, the inactivation of S. cerevisiae cells enabled the full conversion of glucose and xylose within 80 h. Finally, 21.1g/l of ethanol was produced from 10% (w/w) of pretreated rice straw and the ethanol yield of rice straw reached 72.5% of the theoretical yield. This process is expected to be useful for the ethanol production from lignocellulosic materials in the regions where large-scale application of recombinant microorganisms was restricted.  相似文献   

13.
DNA microarray analysis was performed to examine the stress tolerance mechanism of a Saccharomyces cerevisiae recombinant strain exhibiting high trehalose accumulation and heat stress tolerance. Results suggest that the upregulation of sugar transporter genes is one of the key events for heat stress tolerance of the recombinant strain.  相似文献   

14.
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16°Brix with a sucrose solution, and batch fermentations were performed at 22 °C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Yp/s), biomass (Yx/s), glycerol (Yg/s) and acetic acid (Yac/s), the volumetric productivity of ethanol (Qp), the biomass productivity (Px), and the fermentation efficiency (Ef) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the Ef, Yp/s, Yg/s, and Yx/s parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 μg/L), CAT-1 (80,317.01 μg/L), VR-1 (67,573.99 μg/L) and S. bayanus CBS 1505 (71,660.32 μg/L). The highest concentrations of ethyl esters were 454.33 μg/L, 440.33 μg/L and 438 μg/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 μg/L) and higher alcohols (83,996.33 μg/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters.  相似文献   

15.
In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production.  相似文献   

16.
The present study investigated the influences of pH and ethanol on malolactic fermentation (MLF) and the volatile aroma profile of the subsequent white wines from Riesling and Chardonnay inoculated with two different Oenococcus oeni strains. In all cases MLF was induced after completion of alcoholic fermentation (AF). Partial MLF occurred under low pH 3.2 and high alcohol (118.3 g/L) conditions. In the cases with complete MLF, the time required for each strain varied from 13 to 61 days and was dependent on bacterial culture, cultivar and wine parameter. Chemical properties of each wine were determined after AF, complete and partial MLF. The wines showed significant differences in total higher alcohols, esters and acids that are important for the sensory profile and quality of wine. This work demonstrated that the wine matrix as well as the pH and alcohol concentration affects MLF and the final volatile aroma profile. Results indicate that changes in volatile aroma composition are not necessarily related to complete MLF and that partial MLF already has distinct influences on the wine aroma profile of white wines.  相似文献   

17.
Two commercial Saccharomyces cerevisiae strains, a baker's strain and the bio-therapeutic agent Ultralevure, have been proposed as a possible exogenous source of human colonization ( [de Llanos et al., 2004] and [de Llanos et al., 2006a]). Moreover, these strains express phenotypical traits associated to pathogenicity (de Llanos et al., 2006b). Taking into account that both commercial preparations represent an important source of living S. cerevisiae cells we have performed an in vivo study to evaluate whether there is a potential safety risk to humans. Their virulence was compared with that of other commercial strains with less virulent traits, and with clinical isolates, using two murine models (BALB/c and DBA/2N mice). Burden determination in the brain and kidneys showed that the ability to disseminate, colonize and persist was manifested not only by clinical isolates but also by commercial strains. Among these, the baker's strain and Ultralevure were able to cause the death of BALB/c mice at rates similar to those shown by two of the clinical isolates. These results highlight the pathogenic potential of these strains and show that four-week-old BALB/c mice are an appropriate murine model to study the virulence of yeasts with low or moderate pathogenicity. Furthermore, we have shown the positive effect of an immunosuppressive therapy with cyclophosphamide in the virulence of the baker's strains and Ultralevure but not in the rest of the commercial strains under study. The data suggest that although S. cerevisiae has always been considered a GRAS microorganism, commercial preparations should include only those strains shown to be safe in order to minimize complications in risk groups.  相似文献   

18.
We analyzed the variability of volatile acidity and glycerol production by Saccharomyces cerevisiae on a large sample of high sugar musts. The production of volatile acidity was inversely correlated with the maximum cell population and the assimilable nitrogen concentration. The higher the nitrogen concentration, the less volatile acidity was produced. An approach to minimize volatile acidity production during high sugar fermentations by adjustment of assimilable nitrogen in musts was investigated in terms of both quantity and addition time. It was found that the optimal nitrogen concentration in the must is 190 mgN.l(-1). The best moment for nitrogen addition was at the beginning of fermentation. Addition at the end of the growth phase had less effect on volatile acidity reduction. We suggest that by stimulating cell growth, nitrogen addition provides NADH in the redox-equilibrating process, which in turn reduces volatile acidity formation.  相似文献   

19.
Mead fermentation is a time-consuming process, often taking several months to complete. Despite of the use of starter cultures several problems still persist such as lack of uniformity of the final products, slow or premature fermentation arrest and the production of off-flavors by yeast. Thus the aim of this study was to optimize mead production through the use of an appropriate honey-must formulation to improve yeast performance alcoholic fermentation and thereby obtain a high quality product. Honey-must was centrifuged to reduce insoluble solids, pasteurized at 65 °C for 10 min, and then subjected to different conditions: nitrogen supplementation and addition of organic acids. Although the addition of diammonium phosphate (DAP) reduced fermentation length, it did not guarantee the completeness of the fermentation process, suggesting that other factors could account for the reduced yeast activity in honey-must fermentations. Sixteen yeast-derived aroma compounds which contribute to the sensorial quality of mead were identified and quantified. Global analysis of aromatic profiles revealed that the total concentration of aroma compounds in meads was higher in those fermentations where DAP was added. A positive correlation between nitrogen availability and the levels of ethyl and acetate esters, associated to the fruity character of fermented beverages, was observed whereas the presence of potassium tartrate and malic acid decreased, in general, their concentration.This study provides very useful information that can be used for improving mead quality.  相似文献   

20.
Due to the recent changes in yeast taxonomy, a novel wine-related species Candida zemplinina as well as a “reinstated” species Saccharomyces uvarum have been accepted in addition to Candida stellata, Saccharomyces bayanus and Saccharomyces cerevisiae, and the use of the different taxon names has been inconsistent in the literature of food microbiology. The aim of this work is to make an exact comparison of genetically identified strains of these species, under oenological conditions. Dynamics and some important products of alcoholic fermentation were investigated in laboratory fermentations. The results show that C. zemplinina and C. stellata are similar in their strong fructophilic character. C. stellata produces more glycerol and fare more ethanol, which is comparable with that produced by S. uvarum. Strains of the latter species differed from S. cerevisiae mainly in low acetic acid production and lower ethanol yield. Revision of the oenological traits of these yeasts provides new data for consideration in the control of fermentation, with special regard to botrytized sweet wines, where they are frequently found in mixed population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号