首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

2.
Numerous Escherichia coli O157:H7 outbreaks have been linked to consumption of fresh lettuce. The development of effective and easily implemented wash treatment could reduce such incidents. The purpose of this study was to evaluate the addition of food-grade detergents to sanitizer solutions for inactivation of E. coli O157:H7 on Romaine lettuce. Freshly-cut leaves of Romaine lettuce were dip-inoculated to achieve a final cell concentration of 7.8 ± 0.2 log CFU/g, air-dried for 2 h, and stored overnight at 4 °C. Leaves were then washed for 2 min in an experimental short chain fatty acid formulation (SCFA) or in one of the following solutions with or without 0.2% dodecylbenzenesulfonic acid or 0.2% sodium 2-ethyl hexyl sulfate: 1) deionized water; 2) 100 ppm chlorine dioxide; 3) 100 ppm chlorine; and 4) 200 ppm chlorine. Following wash treatment, samples were blended in neutralizing buffer (1:3) and surface plated on the selective media CT-SMAC. The efficacy of wash treatments, with or without the detergents, in inactivating E. coli O157:H7 cells on lettuce leaves were not significantly different. The most effective wash solution was SCFA, which was capable of reducing E. coli O157:H7 populations by more than 5 log CFU/g. The rest of the wash treatments resulted in a population reduction of less than 1 log CFU/g. The effectiveness of SCFA surpasses that of other sanitizer treatments tested in this study and requires further research to optimize treatments to preserve lettuce quality. Conventional detergents did not enhance the efficacy of any of the wash treatments tested during this study.  相似文献   

3.
Lettuce and spinach are increasingly implicated in foodborne illness outbreaks due to contamination by Escherichia coli O157:H7. While this bacterium has been shown to colonize and survive on lettuce leaf surfaces, little is known about its interaction with the roots of growing lettuce plants. In these studies, a microarray analyses, mutant construction and confocal microscopy were used to gain an understanding of structure and function of bacterial genes involved in the colonization and growth of E. coli O157:H7 on lettuce roots. After three days of interaction with lettuce roots, 94 and 109 E. coli O157:H7 genes were significantly up- and down-regulated at least 1.5 fold, respectively. While genes involved in biofilm modulation (ycfR and ybiM) were significantly up-regulated, 40 of 109 (37%) of genes involved in protein synthesis were significantly repressed. E. coli O157:H7 was 2 logs less efficient in lettuce root colonization than was E. coli K12. We also unambiguously showed that a ΔycfR mutant of E. coli O157:H7 was unable to attach to or colonize lettuce roots. Taken together these results indicate that bacterial genes involved in attachment and biofilm formation are likely important for contamination of lettuce plants with Shiga toxin-producing E. coli strains.  相似文献   

4.
Microbial cross-contamination either at home or production site is one of the major factors of causing contamination of foods and leading to the foodborne illness. The knowledge regarding Escherichia coli O157:H7 surface transfer on ready-to-eat (RTE) deli meat and the slicer used for slicing different RTE products are needed to ensure RTE food safety. The objectives of this study were to investigate and to model the surface cross-contamination of E. coli O157:H7 during slicing operation. A five-strain cocktail of E. coli O157:H7 was inoculated directly onto a slicer's round blade rim area at an initial level of ca. 4, 5, 6, 7 or 8 log CFU/blade (ca. 3, 4, 5, 6 or 7 log CFU/cm2 of the blade edge area), and then the RTE deli meat (ham) was sliced to a thickness of 1–2 mm. For another cross-contamination scenario, a clean blade was initially used to slice ham which was pre-surface-inoculated with E. coli O157:H7 (ca. 4, 5, 6, 7 or 8 log CFU/100 cm2 area), then, followed by slicing un-inoculated ham. Results showed that the developed empirical models were reasonably accurate in describing the transfer trend/pattern of E. coli O157:H7 between the blade and ham slices when the total inoculum level was ≥5 log CFU on the ham or blade. With an initial inoculum level at ≤4 log CFU, the experimental data showed a rather random microbial surface transfer pattern. The models, i.e., a power equation for direct-blade-surface-inoculation, and an exponential equation for ham-surface-inoculation are microbial load and sequential slice index dependent. The surface cross-contamination prediction of E. coli O157:H7 for sliced deli meat (ham) using the developed models were demonstrated. The empirical models may provide a useful tool in developing the RTE meat risk assessment.  相似文献   

5.
We developed a rapid and reliable technique for simultaneous detection of Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes that can be used in food products. Magnetic nano-beads (MNBs) based immunomagnetic separation (IMS) was used to separate the target bacterial cells while multiplex PCR (mPCR) was used to amplify the target genes. To detect only the viable bacteria, propidium monoazide (PMA) was applied to selectively suppress the DNA detection from dead cells. The results showed the detection limit of IMS-PMA-mPCR assay was about 102 CFU/ml (1.2 × 102 CFU/ml for S. Typhimurium, 4.0 × 102 CFU/ml for E. coli O157:H7 and 5.4 × 102 CFU/ml for Lmonocytogenes) in pure culture and 103 CFU/g (5.1 × 103 CFU/g for S. Typhimurium, 7.5 × 103 CFU/g for E. coli O157:H7 and 8.4 × 103 CFU/g for L. monocytogenes) in spiking food products samples (lettuce, tomato and ground beef). This report has demonstrated for the first time, the effective use of rapid and reliable IMS combined with PMA treatment and mPCR assay for simultaneous detection of viable S. Typhimurium, E. coli O157:H7 and L. monocytogenes in spiked food samples. It is anticipated that the present approach will be applicable to simultaneous detection of the three target microorganisms for practical use.  相似文献   

6.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

7.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

8.
The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.  相似文献   

9.
Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact to various food products. E. coli O157:H7 produced maximum levels of AI-2 signals in 12 h of incubation in tested meat, poultry, and produce broths and subsequently formed strong biofilm in 24 h of incubation. In general, E. coli O157:H7 formed stronger biofilm on stainless steel than glass. Furthermore, E. coli O157:H7 that had attached on the surface of stainless steel was able to transfer to meat, poultry, ready-to-eat deli, and produce products. Strong attachment of the transferred pathogen on produce products (cantaloupe, lettuce, carrot, and spinach) was detected (>103 CFU/cm2) even after washing these products with water. Our findings suggest that biofilm formation by E. coli O157:H7 on food contact surfaces can be a concern for efficient control of the pathogen particularly in produce products that require no heating or cooking prior to consumption.  相似文献   

10.
Impact of drip and overhead sprinkler irrigation on the persistence of attenuated Escherichia coli O157:H7 in the lettuce phyllosphere was investigated using a split-plot design in four field trials conducted in the Salinas Valley, California, between summer 2007 and fall 2009. Rifampicin-resistant attenuated E. coli O157:H7 ATCC 700728 (BLS1) was inoculated onto the soil beds after seeding with a backpack sprayer or onto 2- or 4-week-old lettuce plant foliage with a spray bottle at a level of 7 log CFU ml−1. When E. coli O157:H7 was inoculated onto 2-week-old plants, the organism was recovered by enrichment in 1 of 120 or 0 of 240 plants at 21 or 28 days post-inoculation, respectively. For the four trials where inoculum was applied to 4-week-old plants, the population size of E. coli O157:H7 declined rapidly and by day 7, counts were near or below the limit of detection (10 cells per plant) for 82% or more of the samples. However, in 3 out 4 field trials E. coli O157:H7 was still detected in lettuce plants by enrichment 4-weeks post-inoculation. Neither drip nor overhead sprinkler irrigation consistently influenced the survival of E. coli O157:H7 on lettuce.  相似文献   

11.
The aim of this study was to determine whether Escherichia coli O157:H7 can be reliably detected and isolated from walnut kernels using standard methods of analysis. The limit of detection approached 1 cell per analytical unit (25 g) for E. coli O157:H7 on walnut kernels enriched in modified tryptic soy broth with 20 μg/ml novobiocin and plating onto selective agar media. The presence of PCR inhibitors in walnut kernels was indicated by the failure to detect E. coli O157:H7 from culture positive enrichment broths analysed by PCR, with two separate polymerase and reagent compositions (Dupont BAX E. coli O157:H7 MP system, Promega GoTaq Green for stx) and three methods of template preparation (DuPont BAX, Qiagen DNeasy, Bio-Rad InstaGene). PCR inhibition was overcome by 1:100 dilution in TE buffer of the DNeasy or InstaGene template. PCR inhibition was not relieved by dilution of the BAX template. Similar results were observed for walnut kernels inoculated with Salmonella enterica and analysed for invA, indicating that PCR inhibition is not specific to the organism or primer/template. These results indicate that analysis of walnut kernels for pathogens should be with culture based methods or use protocols for DNA template preparation modified to remove or dilute inhibitors and the need for internal amplification controls in PCR methods.  相似文献   

12.
Environmental factors encountered during growing and harvesting may contribute to Escherichia coli O157:H7 contamination of lettuce. Limited nutrients and extended exposure to water may cause E. coli O157:H7 to shed its O antigen. Absence of the O157-polysaccharide antigen could affect the cell's physicochemical properties (hydrophobicity and cell charge) and ultimately influence its attachment to surfaces. The objectives of this study were to evaluate the effect of the E. coli O157:H7 O-antigen on the cell's overall hydrophobicity, charge and ability to attach to cut edge and whole leaf iceberg lettuce surfaces. Three strains of E. coli O157:H7 (86-24 wild type; F-12, mutant lacking the O-antigen and pRFBE, plasmid for O157 gene reintroduced) were examined for their hydrophobicity, overall charge and ability to attach to lettuce. Overall, E. coli O157:H7 attached at higher levels to cut surfaces over whole leaf surfaces (P = 0.008) for all strains and treatments. Additionally, the strain lacking the O-antigen (F12) — attached significantly less to lettuce (P = 0.015) than the strains expressing the antigen (WT and pRFBE). Cells lacking the O antigen (strain F-12) were also significantly more hydrophobic than strains 86-24 or pRFBE (P ≤ 0.05). Surface charge differed among the strains tested (P ≤ 0.05); however, it did not appear to influence bacterial attachment to lettuce surfaces. The charge was not fully restored in the pRFBE strain (expression of O-antigen reintroduced), therefore, no conclusions can be made pertaining to the effect of charge on attachment in this study. Results indicate that E. coli O157:H7 cells which lack the O-antigen have greater hydrophobicity and attach at lower concentrations than cells expressing the O-antigen, to iceberg lettuce surfaces.  相似文献   

13.
The antimicrobial potential of switchgrass extractives (SE) was evaluated on cut lettuce leaves and romaine lettuce in planta, using rifampicin-resistant Escherichia coli O157:H7 and Salmonella Typhimurium strain LT2 as model pathogens. Cut lettuce leaves were swabbed with E. coli O157:H7 or S. Typhimurium followed by surface treatment with 0.8% SE, 0.6% sodium hypochlorite, or water for 1 to 45 min. For in planta studies, SE was swabbed on demarcated leaf surfaces either prior to or after inoculation of greenhouse-grown lettuce with E. coli O157:H7 or S. Typhimurium; the leaf samples were collected after 0, 24, and 48 h of treatment. Bacteria from inoculated leaves were enumerated on tryptic soy agar plates (and also on MacConkey's and XLT4 agar plates), and the recovered counts were statistically analyzed. Cut lettuce leaves showed E. coli O157:H7 reduction between 3.25 and 6.17 log CFU/leaf, whereas S. Typhimurium reductions were between 2.94 log CFU/leaf and 5.47 log CFU/leaf depending on the SE treatment durations, from initial levels of ∼7 log CFU/leaf. SE treatment of lettuce in planta, before bacterial inoculation, reduced E. coli O157:H7 and S. Typhimurium populations by 1.88 and 2.49 log CFU after 24 h and 3 h, respectively. However, SE treatment after bacterial inoculation of lettuce plants decreased E. coli O157:H7 populations by 3.04 log CFU (after 0 h) with negligible reduction of S. Typhimurium populations. Our findings demonstrate the potential of SE as a plant-based method for decontaminating E. coli O157:H7 on lettuce during pre- and postharvest stages in hurdle approaches.  相似文献   

14.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

15.
Work examines the origin of bactericidal activity in mustard flour and explores the relative contribution from starter cultures, E. coli O157:H7 itself and other sources. Bacteria can degrade naturally occurring glucosinolates in mustard and form isothiocyanates with antimicrobial activity. In the present work, 24 starter cultures (mostly from commercial mixtures) were screened for their capacity to decompose the glucosinolate, sinalbin. The most active pair, Pediococcus pentosaceus UM 121P and Staphylococcus carnosus UM 123M, were used together for the production of dry fermented sausage contaminated with E. coli O157:H7 (~ 6.5 log CFU/g). They were compared to industrial starters used previously (P. pentosaceus UM 116P and S. carnosus UM 109M) for their reduction of E. coli O157:H7 viability. Sausage batches containing hot mustard powder (active myrosinase), cold mustard powder (inactivated myrosinase), autoclaved mustard powder (inactivated myrosinase) and no mustard flour (control) were prepared. Interestingly, both pairs of starter cultures yielded similar results. Elimination of E. coli O157:H7 (> 5 log CFU/g) occurred after 31 days in the presence of hot flour and in 38 days when the cold flour was added. Reductions > 5 log CFU/g of the pathogen did not occur (up to 38 days) in the control group. It was found that E. coli O157:H7 itself had a greater effect on sinalbin conversion than either pair of starter cultures, and glucosinolate degradation by the starter cultures was less important in determining E. coli survival. The autoclaved powder caused more rapid bactericidal action against E. coli O157:H7, yielding a > 5 log CFU/g reduction in 18 days. This may have been a result of the formation and/or release of antimicrobial substances by the autoclave treatment. Autoclaved mustard powder could potentially solve an important challenge facing the meat industry as it strives to manufacture safe dry fermented sausages.  相似文献   

16.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   

17.
Escherichia coli O157:H7 is an important foodborne pathogen, and foods of bovine origin and fresh produce have been linked to outbreaks. Real-time multiplex PCR assays were developed to detect E. coli O157:H7 in different foods. Apple cider and raw milk (25 ml) and ground beef and lettuce (25 g) were inoculated with 2 or 20 colony-forming units (CFU) of E. coli O157:H7 380-94 and subjected to enrichment in RapidChek E. coli O157:H7 broth at 42°C. One milliliter of the enrichments was removed at 8 and 20 h, and following DNA extraction, real-time multiplex PCR assays targeting the stx 1, stx 2, and wzy O157 genes in combination with probes and primers targeting either the fliC h7 or the eae genes were performed using OmniMix HS beads and the SmartCycler. The sensitivity of the real-time multiplex PCR assay was about 225 CFU/PCR. E. coli O157:H7 was detected (fluorescent signal generated for all gene targets) in apple cider, raw milk, lettuce and ground beef samples inoculated with 2 or 20 CFU/g or 25 ml after both 8 and 20 h of enrichment. Enrichments of uninoculated food samples were negative using the multiplex PCR targeting the stx 1, stx 2, wzy O157, and eae genes; however, using the assay targeting the stx 1, stx 2, wzy O157, and fliC h7 gene combination, a positive result was always obtained for the fliC h7 gene using uninoculated ground beef enrichments. Use of other primer sets targeting the fliC h7 gene gave similar results. The real-time multiplex PCR assays targeting the stx 1, stx 2, eae, and wzy O157 or the fliC h7 genes are sensitive and specific and can be used for the detection of E. coli O157:H7 in food, except that the fliC h7 gene may not be a suitable target for the detection of E. coli O157:H7 in ground beef.  相似文献   

18.
The antimicrobial effects of apple-, carrot-, and hibiscus-based edible films containing carvacrol and cinnamaldehyde against Escherichia coli O157:H7 on organic leafy greens in sealed plastic bags were investigated. Fresh-cut Romaine and Iceberg lettuce, and mature and baby spinach leaves were inoculated with E. coli O157:H7 and placed into Ziploc® bags. Edible films were then added to the bags, which were stored at 4°C. The evaluation of samples taken at days 0, 3, and 7 showed that on all leafy greens, 3% carvacrol-containing films had the greatest effect against E. coli O157:H7, reducing the bacterial population by about 5 log CFU/g on day 0. All three types of 3% carvacrol-containing films reduced E. coli O157:H7 by about 5 log CFU/g at day 0. The 1.5% carvacrol-containing films reduced E. coli O157:H7 by 1–4 logs CFU/g at day 7. Films with 3% cinnamaldehyde showed reduction of 0.6–3 logs CFU/g on different leafy greens.  相似文献   

19.
The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.  相似文献   

20.
Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3‐strain mixture of E. coli O157:H7 at 102 or 104 CFU/g. The contaminated lettuce and un‐inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号