首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
郭田 《微型电脑应用》2011,27(8):16-19,72
移动机器人对运动目标的感知和跟踪是实现机器人与环境交互的一项重要能力。针对移动机器人以人为目标的跟踪中在复杂动态环境下经常出现的目标丢失和跟踪模式单一的问题,提出了基于机器学习的人物目标识别算法。该算法可以处理复杂环境下的目标检测和定位。同时设计了交互多模型跟踪算法,可以较好的跟踪以不规律模式运动的目标。最后在交龙移动机器人平台上实现了整个系统,验证了人物目标检测和多模式跟踪算法的鲁棒性和优越性。  相似文献   

2.
面向目标跟踪的传感器网络调度方法   总被引:1,自引:0,他引:1       下载免费PDF全文
对面向移动目标跟踪任务的传感器网络调度方法进行了研究。从单任务跟踪精度和总体任务完成情况两方面设计调度指标,采用扩展卡尔曼滤波器实现目标跟踪并计算跟踪精度,进而建立了该问题的混合整数调度模型。针对模型复杂度较高的特征,提出一种基于局部解空间跳出机制的改进型遗传算法并进行求解。仿真结果表明该算法针对该问题具有较高的求解性能。  相似文献   

3.
由于无源或被动探测设备提供的大多是角度信息,会导致观测非线性、距离不可测、低信噪比等问题,给目标跟踪带来很大的困难.针对被动多传感器目标跟踪系统中,观测量与状态之间存在较强的非线性关系所导致的非线性滤波问题,详细阐述了求容积规则选取积分点的方法,在研究求容积卡尔曼滤波(CKF)的基础上,结合集中式融合策略,推导出了具体滤波过程,提出了相应的被动多传感器目标跟踪算法.仿真结果表明,目标跟踪算法较好地解决了非线性滤波问题,提高了目标跟踪的精度.  相似文献   

4.
郭蕴华 《计算机工程》2010,36(24):142-144
针对主动传感器与被动传感器采样频率不相同的目标跟踪问题,提出一种新的解耦算法。在没有测距信息的采样时刻,通过构造虚拟量测点的方法进行滤波跟踪,有效地利用了全部测角信息,提高了跟踪性能。仿真实验表明,该算法具有较高的跟踪精度,且只占用较小的时间花费。  相似文献   

5.
为了提高对机动目标的跟踪精度,更准确地获得目标实时位置与速度信息,提出了一种改进型交互多模型跟踪算法.采用目标特征数据为初始数据提供限定域,然后在滤波器中加入调节参数,从而利用目标状态增益矩阵与协方差矩阵的迭代完成对跟踪精度的优化.实验仿真分析了机动目标的3种常见状态,并与传统交互多模型跟踪算法进行了对比.实验结果显示...  相似文献   

6.
移动目标跟踪是无线传感器网络中的一项重要应用,将睡眠调度机制引入到目标跟踪算法中可以大大降低能耗。针对目标跟踪的实际需求,提出一种面向目标跟踪的传感器网络睡眠调度协议。根据目标跟踪不同阶段,分别设计了目标跟踪前和跟踪过程中传感器节点的睡眠调度机制;另外给出了目标丢失时,如何唤醒节点继续跟踪目标的调度策略。结果表明:该算法能够在保证跟踪质量的同时,降低跟踪能耗。  相似文献   

7.
对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略.该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪.簇内节点通过协作感知以及测量信息融合,提高了跟踪精度,同时自适应可变采样间隔节约了通信能量和计算资源,满足了跟踪系统的实时性要求.提出了传感器网络能量均衡分配的指标,提高了网络的可靠性.由于模型的非线性和目标运动的机动性,采用IMM滤波器进行目标状态估计.仿真结果表明,与NSSS和DGSS相比,跟踪精度明显提高;与DCSS相比,在保证一定跟踪精度的同时,节约了能量消耗.  相似文献   

8.
对WSNs中机动目标跟踪问题提出一种自适应多传感器协同跟踪策略。该策略能根据目标的移动位置,动态地唤醒无线传感器网络中部分传感器节点形成分簇,并选择合适的簇首和采样间隔进行目标跟踪。簇内节点通过协作感知以及测量信息融合,提高了跟踪精度,同时自适应可变采样间隔节约了通信能量和计算资源,满足了跟踪系统的实时性要求。提出了传感器网络能量均衡分配的指标,提高了网络的可靠性。由于模型的非线性和目标运动的机动性,采用IMM滤波器进行目标状态估计。仿真结果表明,与NSSS和DGSS相比,跟踪精度明显提高;与DCSS相比  相似文献   

9.
在工程项目调度中保持工期、成本、质量以及资源的均衡控制是构成项目建设总目标的关键因素,关系到整个工程的成败。同时,鉴于基本粒子群算法容易陷入局部最优,提出一种将混沌算法嵌入基本粒子群的新算法,并将其用于求解多目标项目调度问题,通过建立工期、费用、资源和质量多目标综合优化模型,再运用基于优先规则的混沌粒子群算法解决该模型问题。最终通过实例计算表明:相对于基本的粒子群算法,混沌粒子群算法可以更为准确快速地解决该模型下的项目多目标多执行模式优化调度问题。  相似文献   

10.
本文提出了一种基于多特征分析的全数字化仓库监控和智能跟踪算法 ,采用帧差阈值法为主要数据处理模块 ,以基于颜色特征和形状特征为辅助数据分析模块 ,使得对动态目标进行实时、可靠的智能跟踪 ,并且通过缓存系统和优化算法提高智能跟踪效率  相似文献   

11.
针对交互式多模型粒子滤波在跟踪机动目标时精度受限问题,提出一种基于交互式多模型(IMM)的多传感器顺序粒子滤波算法。采用IMM机制实现目标运动模式的确认;在合理利用单传感器量测和多传感器量测中冗余和互补信息的基础上,引入顺序重抽样方法改善粒子分布,并将改善后的粒子应用于IMM粒子滤波算法框架。仿真实验结果表明:新算法能够估计出强机动目标状态,且精度明显优于标准IMM粒子滤波算法。  相似文献   

12.
基于无线传感器网络,对目标定位跟踪应用进行了研究。在对目标定位跟踪时,如何既保证跟踪精度又能有效降低能量消耗,针对这个问题,提出了一种简便的加权坐标质心定位方法,通过对目标的定位,给出了一种基于测量信息的跟踪方法,方法实现简单。性能分析表明:提出的定位跟踪方法能有效地降低能量消耗,延长节点和网络寿命,基本可以满足战场目标跟踪需求。  相似文献   

13.
在射频传感器网络中利用接收信号强度来实现无设备运动跟踪是一种新兴技术。由于待重建的场景是稀疏的,即目标个数很少,这样可以应用压缩传感技术。提出把目标跟踪作为压缩传感的信号重建问题,并提出贪婪检测估计算法来求解目标位置。同时,设计一种利用目标先验位置信息的反馈跟踪方法来减少信号重建时所需的测量数。通过实验验证:贪婪检测估计算法可获得较好的信号重建结果,而且在目标跟踪应用中也较为精确。  相似文献   

14.
在机动目标跟踪中,用于模型辨识和状态估计的非线性滤波器的合理选择和优化是提升滤波精度的关键.融合量测迭代更新集合卡尔曼滤波和交互式多模型(interacting multiple models,IMM)方法,本文提出了基于量测迭代更新集合卡尔曼滤波的机动目标跟踪算法.通过迭代更新思想的引入构建了一种量测迭代更新下集合卡尔曼滤波的实现结构,并将其作为IMM的模型滤波器实现对于目标运动模式和状态的辨识与估计.针对算法结合过程中滤波精度和计算量的平衡,设计了用于输入交互环节的状态估计样本,同时简化输入交互环节和输出交互环节中滤波误差协方差矩阵的交互过程.理论分析和仿真结果验证了算法的可行性和有效性.  相似文献   

15.
基于Mean-shift的改进目标跟踪算法   总被引:3,自引:0,他引:3  
张玲  蒋大永  何伟  周阳 《计算机应用》2008,28(12):3120-3122
传统的Mean-shift目标跟踪算法对背景因素比较敏感,采用核加权直方图的方法计算目标模板与候选区域目标特征往往无法实现对运动目标的准确定位。在研究传统算法的基础上,改进了Mean-shift算法中目标特征选取机制,即目标模板采用背景加权,候选目标区域采用核加权。仿真结果表明,该方法实现了在复杂环境背景下对运动目标更加准确的跟踪。  相似文献   

16.
Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energyefficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.  相似文献   

17.
一种基于无线传感器网络的分布式处理目标跟踪系统   总被引:1,自引:0,他引:1  
系统使用超声波传感器和扩展卡尔曼滤波对无线传感器网络中的移动单目标进行定位跟踪.节点嵌入式应用程序采用TinyOS/nesC[1]编程实现,采用Labview进行应用层开发.为了优化网络的能耗以延长网络寿命,提出了两种在分布式传感器网络中局部节点自适应选择任务节点[2]的方法.实验结果验证了扩展卡尔曼算法的正确性,并比较了这两种任务节点选择调度方法的跟踪性能,得出了基于候选节点协方差矩阵最小迹的任务节点选择调度方式在目标丢失率和跟踪精度综合考虑的基础上性能更优.  相似文献   

18.
This article addresses the problem of tracking a manoeuvring target in a wireless sensor network (WSN) consisting of distance-measuring sensor nodes. In order to cope with target manoeuvres, an interacting multiple model (IMM) filter is applied to estimate the position and velocity of the target. The distance-dependent measurement error of sensors is formulated as both additive and multiplicative noise in the observation equation. To deal with nonlinearities in the process and observation equations and also to solve the problem of multiplicative measurement noise, a new particle filter (PF)-based IMM approach is developed. Furthermore, the multiple-model posterior Cramér-Rao lower bound (PCRLB) is derived in the presence of both additive and multiplicative noise and it is used to perform a sensor selection algorithm to reduce energy consumption in WSN nodes. Simulation results show the effectiveness of the proposed IMMPF and sensor selection algorithms in target tracking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号