首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Much of the research on backpack design has been focused on spinal loading/biomechanics while the wearer is in a neutral/upright trunk posture, such as those employed by outdoor enthusiasts and schoolchildren. This research has led to some important harness design improvements that reduce trunk muscle exertions, fatigue and improve overall comfort. There are number of occupations, however, wherein workers wear back-mounted packs/devices (e.g. air tanks) while working in non-neutral trunk postures. The objective of the current study was to evaluate the effects of these non-neutral postures on biomechanical loading and then reconsider the backpack system design recommendations. Fifteen participants were asked to support a 18.2 kg load on their back while assuming static forward flexed postures of the torso (15 degrees , 30 degrees , 45 degrees , and 60 degrees of sagittal bend). The mass on the back was attached to the participant through two different harness mechanisms: a basic harness design (as seen on college student backpacks) and a more advanced design containing lateral stiffness rods and a weight-bearing hip belt (as seen on backpacks for hikers). While performing these static, posture maintenance tasks, the activation levels of the bilateral trapezius, erector spinae, and rectus abdominis were collected. Participants also provided subjective ratings of comfort. The results showed that there was a significant interaction between harness type and forward flexion angle for the trapezius and the erector spinae muscles. The normalized EMG for the trapezius muscles showed a 14% and 11% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design but these positive effects of the advanced design were not found at the greater flexion angles. Likewise the erector spinae muscles showed a 24% and 14% reduction in muscle activity at 15 degrees and 30 degrees , respectively, with the advanced design harness but these effects of the advanced design were not found at the greater forward flexion angles. The level of forward flexion angle affected the rectus abdominis muscle activity, but neither the harness type main effect nor the interaction of harness type and forward flexion angle was significant. The subjective survey results agreed with the EMG results and showed the advanced design harness was generally more comfortable with respect to the shoulder and low back areas. Collectively, the subjective and objective results show a significant improvement with the advanced harness system but also note an interesting interaction with degree of sagittal flexion, indicating a diminished effectiveness of the design improvements at forward flexed postures. Design criteria for harness systems in these forward flexed postures are discussed.  相似文献   

2.
Immediate effects of backpack carriage on spinal curvature and motor control in adults have been reported. However, there is a scarcity of evidence whether the effects would persist or not after the carrying load is removed. This study aimed to investigate the carry-over effects of backpack carriage on trunk posture and repositioning ability. Thirteen healthy adults were recruited and instructed to walk on a treadmill for 30 min with backpack (10% body weight) followed by 30-min unloaded walking. Participant’s trunk posture and repositioning ability were measured at different time points. During backpack carriage, reduction in lumbar lordosis and posterior pelvic tilt with significant increased cervical lordosis, thoracic kyphosis and trunk forward lean were observed. There was also a significant increase in repositioning errors in all spinal curvatures and trunk forward lean. After removal of the carrying load, there was a tendency for restoration of trunk posture and repositioning ability. However, the cervical lordosis and the repositioning error of all spinal curvatures could not be fully returned to the levels of the preload condition (all p < 0.05). The persistent changes in both spinal curvature and repositioning ability revealed an increased risk of spinal injury even after the backpack was removed, and the effects on the neck and back pain warrant future study.

Relevance to Industry

The effects of backpack carriage (10% body weight for 30 min) on the spine could not be fully restored after 30-min unloaded walking. The persistent changes in both spinal curvature and repositioning ability revealed an increased risk of spinal injury even after the backpack was removed. Proper postural reminder might be given to backpack users to alleviate the adverse effects induced after prolonged backpack carriage.  相似文献   

3.
The purpose of this paper is to test the suitability of a modified backpack that distributes the carrying loads on the school children's chest and back. Sixty one (7.4 yr ± 0.97), sixty (11.7 yr ± 1.05), fifty eight (15.7 yr ± 1.18) and fifty nine (18.9 yr ± 1.45) school children were participated in the study representing the first, second, third and fourth group, respectively. They carried 0%, 5%, 10%, 15%, 20% and 25% of body weight in both commercial and modified backpacks while walking for 5 min. Main response measures were normalized rectus abdominus and erector spinae muscular activities, exertion ratings and cardiac cost, which is defined as the difference between heart rate of last walking minute and standing heart rate. The stresses on rectus abdominus and erector spinae muscles while wearing commercial backpack were significantly higher than those when participants worn modified backpack. Cardiac costs were significantly less in the case of the modified backpack compared to the commercial backpack case. Also, participants felt more comfortable while wearing the modified backpack compared to wearing commercial backpack. This paper showed that modified backpack was superior to commercial backpack in terms of less muscular activities, less cardiac costs and less exertion ratings. Moreover, the proposed design prevents the students from carrying their loads in one side. This study provides the community with a modified backpack that increases comfort and decreases pain. The student's preference of backpack may change when they use it.  相似文献   

4.
Simon S. W. Li 《Ergonomics》2018,61(4):553-565
This study investigated the effects of carrying a backpack while walking. Critical changes featuring the disproportionality of increases in trunk muscle activation and lumbar joint loading between light and heavy backpack carriage weight may reveal the load-bearing strategy (LBS) of the lumbar spine. This was investigated using an integrated system equipped with a motion analysis, a force platform and a wireless surface electromyography (EMG) system to measure the trunk muscle EMG amplitudes and lumbar joint component forces. A predictive goal programming model was developed to determine the most critical changes in trunk muscle activation and lumbar joint loading. Results suggested that lightweight backpack carriage at approximately 3% of body weight (BW) might reduce the peak lumbosacral compression force by 3% during walking compared with no load condition. The most critical changes in both trunk muscle activation and lumbosacral joint loading were found at a backpack load of 10% of BW.

Practitioner Summary: This study investigated the effects of backpack load on the LBS of lumbar spine while walking. A backpack load of 3% of BW might reduce the peak lumbosacral compression force by 3 and 10% of BW induced the most critical changes in LBS of lumbar spine.  相似文献   


5.
The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The ‘seat effective amplitude transmissibility’ (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1–20 Hz at magnitudes of vibration from 0.2 to 1.6 ms−2 r.m.s. The ‘measured seat dynamic discomfort’ (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings.  相似文献   

6.
《Ergonomics》2012,55(9):935-955
Subjective perceptual methods have provided useful information in the laboratory about small differences in backpack design when physiological and biomechanical comparisons are ineffective, but have never been used in the field. This study therefore evaluated, in a controlled field trial with 10 male participants, the suitability of quantitative and qualitative subjective perceptual approaches to distinguish between subtle design differences in two backpacks, each loaded to 15 kg. In addition, initial quantitative subjective impressions about the two backpacks during a 15 min simulated ‘in-shop’ trial were compared with post-field trial backpack preference. In the simulated ‘in-shop’ trial the participants ‘tried out’ the backpack in a manner that was very similar to the way that they would normally try out a backpack as if they were considering buying one in an ‘outdoor’ shop. It included donning and doffing the pack several times and walking around the room wearing the backpack. In the controlled field trial, participants carried the two backpacks for approximately 15 min around a 1313 m hilly outdoor track at a self-selected walking pace which elicited a moderate exercise intensity. Seven participants preferred backpack A. Three preferred backpack B. The qualitative approach, which required participants to provide free-format written responses to semi-structured open-ended questions immediately after the field trial, successfully identified specific reasons underlying participants' preferences. The main reasons for preferring backpack A were better balance, weight distribution, stability up and down hill and over obstacles, fewer pressure points on their back and easier strap location and adjustment. The quantitative approach, which involved participants responding to written post-field trial questions on visual analogue or category ratio rating scales, was generally unsuccessful in distinguishing between backpacks. Thus, qualitative subjective perceptual methods appeared to be more useful than quantitative ones in distinguishing between backpacks and in identifying positive and negative design features under controlled field conditions in which participants carry a backpack at a moderately intense self-selected exercise level. However, since the quantitative approach had been successful in distinguishing between backpacks in an earlier similar study, in which participants exercised more intensely by walking uphill on a treadmill at a fixed pace, it is possible that the quantitative subjective perceptual approach may be capable of distinguishing between backpacks in the field if a fixed pace eliciting higher exercise intensity were to be used. Finally, since quantitative responses to questions about the backpacks after a short simulated ‘in-shop‘ trial closely agreed with participants' post-field trial overall backpack preference, it is concluded that initial subjective impressions may be a good guide to backpack preference after limited field usage.  相似文献   

7.
We investigated the effect of an alternative welding system designed to reduce exposure to extreme trunk flexion on measures of trunk inclination and muscle activity. Among 10 participants, data were collected while using conventional stud welding equipment and while using the alternate system. Paired t-tests were used to compare results between the two welding systems. Mean trunk inclination angle was reduced with the alternate system (34.4° versus 9.7°, p < 0.01). Percent time with trunk inclination angles greater than 60° was also reduced (40.0% versus 4.7%, p < 0.01). In general, the alternate system resulted in less desirable upper trapezius muscle activity levels. The alternate system appears to be effective in reducing exposure to extreme trunk flexion among stud welders. Continued development of the system should explore features designed to reduce shoulder forces and improve productivity.  相似文献   

8.
Load carriage has been associated with a risk of upper and lower limb musculoskeletal disorders with women suffering significantly higher injury rates than their male counterparts. Despite this injury risk, there are limited evidence-based guidelines for recreational hikers, particularly female recreational hikers, regarding safe backpack loads. The purpose of the present study was to determine how variations in load mass affected the heart rate, posture and subjective responses of women during prolonged walking to provide evidence for a load mass limit for female recreational hikers. Heart rate (HR), posture and ratings of perceived exertion (RPE) and discomfort were collected for 15 female experienced recreational hikers (22.3 ± 3.9 years) while they hiked for 8 km at a self-selected pace under four different load conditions (0%, 20%, 30% and 40% of body weight (BW)). Although HR was not significantly affected by load mass or walking distance, increasing load mass and distance significantly affected posture, RPE and discomfort of the upper body. Carrying a 20% BW load induced significant changes in trunk posture, RPE and reported shoulder discomfort compared to the unloaded condition. The 20% BW load also resulted in a mean RPE rating of ‘fairly light’, which increased to ‘hard’ when carrying a 40% BW load. As load carriage distance increased participants reported significantly increased shoulder, neck and upper back discomfort. Based on the changes to posture, self-reported exertion and discomfort when carrying loads of 20%, 30% and 40% BW over 8 km, it was concluded that a backpack load limit of 30% BW should be recommended for female recreational hikers during prolonged walking.  相似文献   

9.
The objective of this study was to assess the impact of breathing resistance on physiological and subjective responses to N95 filtering facepiece respirators (N95 FFRs) during still-sitting and walking. Fifteen subjects sat for 5 min and walked for 5 min while wearing 2 different models of N95 FFRs, 1 model of which was equipped with exhalation valves (N95 FFR/EV). The subjects were monitored by a modified monitoring garment for respiratory signals (RSP) and surface electromyography (sEMG). Subjects also were asked to complete subjective ratings of overall breathing resistance. The results of the physiological measurements in this study have shown that compared with no respirator, wearing N95 FFR had a direct effect on increasing respiratory amplitude, muscle activity and fatigue of abdominal, and fatigue of scalene; The use of N95 FFR/EV conferred limited physiological benefit over N95 FFR in walking; Compared with sitting still, walking significantly decreased respiratory amplitude, but increased respiratory rate, the muscle activity of sternomastoid, scalene, diaphragm and abdominal, the fatigue of scalene and intercostal. The subjective survey showed that wearing respirators and walking had a direct effect on improving the subjective overall breathing resistance. Significantly low to moderate correlation coefficients were shown between physiological values (respiratory amplitude, the muscle activity of diaphragm, the muscle activity and fatigue of scalene and abdominal), and the subjective breathing resistance. This is the first reported study that combines RSP, sEMG and subjective overall breathing resistance to evaluate breathing resistance on the use of N95 FFR in sitting still and walking. The physiological responses to breathing resistance of wearing a N95 FFR for 5 min in still-sitting and walking are relatively small and should generally be well tolerated by healthy persons.Relevance to industryThis paper's findings can be readily employed by respirator manufactures and administrations for evaluating the respiratory muscle function (activity, fatigue) and breathing parameters of wearing N95 FFRs. Observations of present study are in support of issuing new regulations to raise the limit for breathing resistance over short periods at low-moderate exertion tasks. Thus, the manufacturers could easily fulfill the requirements for collection efficiency by adding more filter media while still meeting the requirements for air resistance.  相似文献   

10.
ObjectiveThis study aimed to assess the effects of backrest inclination and vibration frequency on muscle activity in a dynamic environment using a musculoskeletal model.MethodThe muscle activity modeling method was used to analyze a full body musculoskeletal system of a seated person with a public domain rigid body model in an adjustable car seat. This model was established using AnyBody Modeling System, based on the inverse dynamic approach. And the min/max criterion in dealing with the muscle redundancy problem. Ten healthy subjects were exposed to whole body vibration (WBV) with five frequencies (3, 4.5, 6, 7, and 8 Hz) in the vertical direction in a randomized order on three separate days. The displacement of the seat-pan and head was measured using a hybrid Polaris spectra system to obtain the seat-to-head (STH) transmissibility. Muscle oxygenation was measured using near-infrared spectroscopy. The validity of the model was tested using STH transmissibility and muscle oxygenation.ResultsIncreased vibration frequency caused high muscle activities of the abdomen and the right leg with a backrest forward inclination angle. The muscle activities of the left leg decreased at a backrest backward inclination except at inclination angles of 15° and 30°. Muscle activity of the lumbar suddenly increased at a backrest inclination angle of 5° and vibration frequency of 5 Hz. Muscle activities were higher under vibration than that without vibration.ConclusionVibration frequency significantly affected the muscle activity of the lumbar area. Likewise, the inclination degree of the backrest significantly affected the muscle activities of the right leg and the abdomen. The combination of vibration and forward inclination of the backrest can be used to maximize the muscle activity of the leg, similar to the abdomen and lumbar muscles.Relevance to the industryThe musculoskeletal model established in the present study provides a method that can be used to investigate the biomechanical response of seated drivers to WBV. This model helps protect drivers from occupational injury.  相似文献   

11.
Low back injury due to manual lifting is historically prevalent in labor intensive industries. Improving risk management options is necessary to reduce the risk of low back injury. Workers lifting unstable loads are at greater risk of back injury compared to workers lifting stable loads. This study focused on the effect of engineering controls on trunk muscle activity. Engineering controls were designed to control the instability of a liquid load. Thirty-nine healthy subjects manually lifted asymmetrically in the transverse direction stable loads, unstable loads, and unstable loads with engineering controls. Trunk and load kinematic and trunk muscle electromyography data were collected during lifting. Unstable loads with engineering controls significantly (p < 0.001) reduced trunk muscle activity compared to unstable loads. Engineering controls should be implemented to reduce the risk of injury to workers handling unstable liquid loads.Relevance to industryManually handling containers filled with liquids is necessary in many industrial workplaces. Risk management solutions for low back injury due to manual lifting of such loads should focus on reducing muscular demand. This study demonstrates that engineering controls designed to increase the stability of a liquid load reduced muscular demand.  相似文献   

12.
Four backpacks were evaluated for their desireability for use as school bags. Three of the four backpacks were specifically designed for school use based on previous research and ergonomic principles while the fourth (standard) backpack was chosen from two backpacks that their manufacturer considered to be the most likely to be used as a school bag. Twelve school students evaluated each of the backpacks firstly by examining them, again after donning them and again after walking with them on a treadmill by completing a questionnaire asking about the appearance, function and comfort of each backpack. On initial examination, the standard backpack was the most favoured but as functionality became increasingly important during the treadmill walk, the backpack which was designed specifically for school use and had two major compartments, substantial back padding and side compression straps became the most favoured. This particular design of backpack was reported as having the greatest practicality, being the least physically demanding and allowing the greatest balance and ease of walking. The results of this study suggest that school student's preference of backpack may change from when they first examine a prospective backpack to when they have used it. The study also shows that school students' preferred attributes in a backpack may shift over this time from 'style and image' to 'function and fit'.  相似文献   

13.
This paper reviews the biomedical aspects of transporting loads in packs and offers suggestions for improving load-carriage capability. Locating the load mass as close as possible to the body center of gravity appears to result in the lowest energy cost when carrying a pack. Thus, the double pack (half the load on the front of the body and half the load on the back) has a lower energy cost than the backpack. However, backpacks provide greater versatility in most situations. The energy cost of walking with backpack loads increases progressively with increases in load mass, body mass, walking speed or grade; type of terrain also influences energy cost. Predictive equations have been developed for estimating the energy cost of carrying loads during locomotion but these may not be accurate for prolonged (>2 h) or downhill carriage. Training with loads can result in greater energy efficiency since walking with backpack loads over several weeks decreases energy cost. Load-carriage speed can be increased with physical training that involves regular running and resistance training. Erector spinae electrical activity (EMG) is lower during load carriage than in unloaded walking until loads exceed 30-40 kg, at which point erector spinae EMG activity is higher than during unloaded walking. EMGs of the quadriceps and gastrocnemius, but not the tibialis anterior or hamstrings, increase with load. Framed packs with hip belts reduce the electrical activity of the trapezius muscles, presumably by shifting forces from the shoulders to the hips. Increases in the backpack load mass result in increases in forces exerted on the grounds, amount of knee flexion and the forward inclination of the trunk. Compared to backpacks, double packs produce fewer deviations from normal walking. Common injuries associated with prolonged load carriage include foot blisters, stress fractures, back strains, metatarsalgia (foot pain), rucksack palsy (shoulder traction injury) and knee pain. Closed-cell neoprene insoles and use of an acrylic or nylon sock, combined with a wool sock, reduce blister incidence. A framed pack with a hip belt reduces the incidence of rucksack palsy. Backpack load carriage can be facilitated by lightening loads, optimizing equipment, improving load distribution and by preventive action aimed at reducing the incidence of injury.  相似文献   

14.
《Ergonomics》2012,55(12):1653-1660
Abstract

This study was designed to investigate the cardiorespiratory, metabolic, and subjective responses to carrying a load close to the trunk in five different ways. Each of five subjects carried a load equivalent to 35% body weight (BW) for one hour at 4-5 km hr?1 and 0%grade on a motor driven treadmill using each of the following modes of load carriage: (1) the total load carried in a backpack with frame (BP/F), (2) the total load carried in a backpack with no frame (BP/NF), (3) half the load in a backpack (with frame) and half in pouches attached to a waist belt (BP/WB), (4) half the load in a backpack (with frame) and half in a front pack on the chest (BP/FP), and (5) the total load carried as a trunk jacket (TJ), i.e. a military type ‘flak’ jacket with weights inserted in pockets evenly distributed about the trunk. There were no statistically significant differences in the mean cardiorespiratory and metabolic costs associated with each of the five modes of load carriage. However, BP/FP and TJ were subjectively rated as significantly (P < 001) more comfortable than BP/F and BP/NF, suggesting that there may be physiological differences between the five modes of load carriage which were not detected by the cardiorespiratory and metabolic measurements used in this study (i.e. heart rate, oxygen consumption and minute ventilation). In contrast, the BP/FP was reported to be the hardest to don and doff and was associated with a statistically significant (P <0-05) restrictive type of ventilatory impairment. In conclusion, in practical terms there may seldom be a single ‘best’ way to carry a 35% BW load close to the trunk.  相似文献   

15.
Exposure to high frequency (kHz) vibration from impact power tools is overlooked in the ISO 5349-1 risk prediction for acquiring Hand Arm Vibration Syndrome. The biological effects of high frequency, power tool vibration have not been adequately studied. We characterized the magnitude and transmissibility of riveting hammer vibration in a rat tail model using a light weight piezoelectric sensor. The performance of the newly-introduced piezoelectric sensor was validated by showing its similarities to the previously published laser vibrometer. ISO 5349-1 frequency weighting revealed major risk from the 35 Hz component of the riveting hammer vibration, whereas the weighted values of the kHz components were not calculated to reach exposure action value in 24 h– However, the unweighted acceleration magnitudes at 12.4 and 16.3 kHz were about 10 and 50 times larger than the unweighted acceleration peak observed at 35 Hz. A transmissibility of <1 was calculated for 12.4 and 16.3 kHz, indicating tissue absorbance, while 35 Hz exhibited a transmissibility of 9.05, suggesting tissue resonance. The largest absolute change in acceleration was at 12.4 and 16.3 kHz, implicating that a considerable amount of high frequency vibration energy was absorbed by the tissue. A progressive reduction in intact sensory nerve endings was observed in the tissue when increasing vibration exposure from 1 min to 12 min.  相似文献   

16.
Train passengers often read newspapers while traveling. Vibration is one of the key factors that may occasionally inhibit this activity. An experimental study was, therefore, conducted to investigate the extent of interference perceived in reading task by seated subjects in two postures under random vibration. 30 healthy male subjects were exposed to vibration magnitudes of 0.4, 0.8 and 1.2 m/s2 in mono, dual and multi axis in the low frequency range 1–20 Hz. The task required subjects to read a given paragraph of Hindi national newspaper, in two seated postures (lap posture with backrest support and table posture with leaning over the table). The reading performance was evaluated by both degradation in performance in terms of time required to complete the task and subjective rating using Borg CR10 scale. Both the methods of reading performance evaluation exhibit progressive increase with an increase in vibration magnitude for both the subject postures in all the direction of vibration and are found to be higher in lateral and vertical direction among mono axes. The effects of multi axis vibration on perceived difficulty have been found to be similar to dual axes vibration and greater than mono axes vibration; however degradation in reading performance in multi axis vibration was also found to be similar to that for lateral direction. A comparison of the effect of postures by both evaluation methods revealed that the reading performance was adversely affected for table posture in all direction of vibration, however for lap posture, only the X-axis vibration effect was more severe.

Relevance to industry

Available ride comfort standards for vehicles do not include the effects of vibrations on passenger activities. Assessment of activity discomfort would be useful for vehicle design optimization to facilitate activity comfort.  相似文献   

17.
Legg SJ  Barr A A  Hedderley DI 《Ergonomics》2003,46(9):935-955
Subjective perceptual methods have provided useful information in the laboratory about small differences in backpack design when physiological and biomechanical comparisons are ineffective, but have never been used in the field. This study therefore evaluated, in a controlled field trial with 10 male participants, the suitability of quantitative and qualitative subjective perceptual approaches to distinguish between subtle design differences in two backpacks, each loaded to 15 kg. In addition, initial quantitative subjective impressions about the two backpacks during a 15 min simulated 'in-shop' trial were compared with post-field trial backpack preference. In the simulated 'in-shop' trial the participants 'tried out' the backpack in a manner that was very similar to the way that they would normally try out a backpack as if they were considering buying one in an 'outdoor' shop. It included donning and doffing the pack several times and walking around the room wearing the backpack. In the controlled field trial, participants carried the two backpacks for approximately 15 min around a 1313 m hilly outdoor track at a self-selected walking pace which elicited a moderate exercise intensity. Seven participants preferred backpack A. Three preferred backpack B. The qualitative approach, which required participants to provide free-format written responses to semi-structured open-ended questions immediately after the field trial, successfully identified specific reasons underlying participants' preferences. The main reasons for preferring backpack A were better balance, weight distribution, stability up and down hill and over obstacles, fewer pressure points on their back and easier strap location and adjustment. The quantitative approach, which involved participants responding to written post-field trial questions on visual analogue or category ratio rating scales, was generally unsuccessful in distinguishing between backpacks. Thus, qualitative subjective perceptual methods appeared to be more useful than quantitative ones in distinguishing between backpacks and in identifying positive and negative design features under controlled field conditions in which participants carry a backpack at a moderately intense self-selected exercise level. However, since the quantitative approach had been successful in distinguishing between backpacks in an earlier similar study, in which participants exercised more intensely by walking uphill on a treadmill at a fixed pace, it is possible that the quantitative subjective perceptual approach may be capable of distinguishing between backpacks in the field if a fixed pace eliciting higher exercise intensity were to be used. Finally, since quantitative responses to questions about the backpacks after a short simulated 'in-shop' trial closely agreed with participants' post-field trial overall backpack preference, it is concluded that initial subjective impressions may be a good guide to backpack preference after limited field usage.  相似文献   

18.
IntroductionExposure to whole body vibration (WBV) is one of the most important risks for musculoskeletal disorders (MSDs). The objective of the study was to investigate whether an active cab suspension system fitted on a telehandler was effective in reducing WBV and in improving comfort.MethodSixteen male healthy professional operators drove a telehandler on a 100 m ISO 5008 smooth track at two different speeds (5 and 12 kph) with activated and deactivated cab suspension system. Adopting an ergonomic approach, different aspects of the human-machine interaction were analyzed: 1) vibration transmissibility, 2) subjective ratings of general comfort and local body discomfort, and 3) anthropometric characteristics of the users.ResultsA series of ANCOVAs showed that the suspension system was effective in reducing WBV at both speeds but did not affect the perception of comfort by the operators. Moreover, individuals with higher Body Mass Index (BMI) experienced more comfort. Some neck/shoulder and lumbar complaints and perceived hard jolts seemed to remain even when the system was activated. No correlations were found between objective and subjective measures.Practical applicationsResults suggest that the operators, given their wide range of physical variability, may need more adjustable or customizable WBV reduction systems.  相似文献   

19.
《Ergonomics》2012,55(6):771-790
Judgements of overall seating comfort in dynamic conditions sometimes correlate better with the static characteristics of a seat than with measures of the dynamic environment. This study developed qualitative models of overall seat discomfort to include both static and dynamic seat characteristics. A dynamic factor that reflected how vibration discomfort increased as vibration magnitude increased was combined with a static seat factor which reflected seating comfort without vibration. The ability of the model to predict the relative and overall importance of dynamic and static seat characteristics on comfort was tested in two experiments. A paired comparison experiment, using four polyurethane foam cushions (50, 70, 100, 120 mm thick), provided different static and dynamic comfort when 12 subjects were exposed to one-third octave band random vertical vibration with centre frequencies of 2.5 and 5.5 Hz, at magnitudes of 0.00, 0.25 and 0.50 m.s-2 rms measured beneath the foam samples. Subject judgements of the relative discomfort of the different conditions depended on both static and dynamic characteristics in a manner consistent with the model. The effect of static and dynamic seat factors on overall seat discomfort was investigated by magnitude estimation using three foam cushions (of different hardness) and a rigid wooden seat at six vibration magnitudes with 20 subjects. Static seat factors (i.e. cushion stiffness) affected the manner in which vibration influenced the overall discomfort: cushions with lower stiffness were more comfortable and more sensitive to changes in vibration magnitude than those with higher stiffness. The experiments confirm that judgements of overall seat discomfort can be affected by both the static and dynamic characteristics of a seat, with the effect depending on vibration magnitude: when vibration magnitude was low, discomfort was dominated by static seat factors; as the vibration magnitude increased, discomfort became dominated by dynamic factors.  相似文献   

20.
Overloaded backpacks can cause changes in posture and gait dynamic balance. Therefore, the aim of this study was to assess gait regularity and local dynamic stability in young adults as they carried a backpack in different positions, and with different loads. Twenty-one healthy young adults participated in the study, carrying a backpack that was loaded with 10 and 20% of their body weight (BW). The participants walked on a level treadmill at their preferred walking speeds for 4 min under different conditions of backpack load and position (i.e. with backpack positioned back bilaterally, back unilaterally, frontally or without a backpack). Results indicate that backpack load and positioning significantly influence gait stability and regularity, with the exception of the 10% BW bilateral back position. Therefore, the recommended safe load for school-age children and adolescents (10% of BW) should also be considered for young adults.

Practitioner summary: Increase in load results in changes in posture, muscle activity and gait parameters, so we investigated the gait adaptations related to regularity and stability. Conditions with high backpack loads significantly influenced gait stability and regularity in a position-dependent manner, except for 10% body weight bilateral back position.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号