首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensor developed for measurement of water concentration inside glass/polymer encapsulation structures with a particular application area in accelerated aging of photovoltaic module encapsulants is described. An approximately 5 μm thick porous TiO2 film applied to a glass substrate with a conductive coating acts as the moisture-sensitive component. The response is calibrated with weather chamber experiments for sensors open to the environment and with diffusion experiments for sensors laminated under an encapsulant. For the interpretation of diffusion experiment results, a transport model describing the diffusion of water across the polymer/TiO2 interface is developed. The logarithm of AC resistance shows a linear dependence on water concentration in both open and encapsulated calibration. The first measurable response from an encapsulated 3.5 mm × 8 mm size sensor is obtained when approximately 10 μg of water has entered the film. Implications of the calibration results for sensor usage in accelerated aging tests are discussed.  相似文献   

2.
Piezoresistive composites with high hardness and conductivity are required for circuit breakers for multi-cycle operation under large current flow. Based on the simulation results for the mechanical behavior of piezoresistive composites, we developed piezoresistive composites with conductive TiB2 ceramic materials and silicone rubber. TiB2 up to 70 vol.% was embedded into the polymer matrix without any mechanical deterioration while the electrical resistance was decreased with increasing TiB2 content. Piezoresistive composites with 70 vol.% TiB2 particles exhibited a resistance of 1.7 Ω at a pressure of 1.1 MPa. A circuit breaker with the fabricated piezoresistive composites acted as a switch with a response time of around 2 ms.  相似文献   

3.
4.
Thin films of polymethylmethacrylate (PMMA) doped with perylene provide selective, robust and easily prepared optical sensor films for NO2 gas with suitable response times for materials aging applications. The materials are readily formed as 200 nm thin spin cast films on glass from chlorobenzene solution. The fluorescence emission of the films (λmax=442 nm) is quenched upon exposure to NO2 gas through an irreversible reaction forming non-fluorescent nitroperylene. Infrared, UV–VIS and fluorescence spectroscopies confirmed the presence of the nitro adduct in the films. In other atmospheres examined, such as air and 1000 ppm concentrations of SO2, CO, Cl2 and NH3, the films exhibited no loss of fluorescence intensity over a period of days to weeks. Response curves were obtained for 1000, 100 and 10 ppm NO2 at room temperature with equilibration times varying from hours to weeks. The response curves were fit using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem assuming that the situation is reaction limiting. The forward reaction constant fitted to experimental data was kf∼0.06 (ppm min)−1.  相似文献   

5.
In order to reduce the response time of resistive oxygen sensors using porous cerium oxide thick film, it is important to ascertain the factors controlling response. Pressure modulation method (PMM) was used to find the rate-limiting step of sensor response. This useful method measures the amplitude of sensor output (H(f)) for the sine wave modulation of oxygen partial pressure at constant frequency (f). In PMM, “break” response time, which is minimum period in which the sensor responds precisely, can be measured. Three points were examined: (1) simulated calculations of PMM were carried out using a model of porous thick film in which spherical particles are connected in a three-dimensional network; (2) sensor response speed was experimentally measured using PMM; and (3) the diffusion coefficient and surface reaction coefficient were estimated by comparison between experiment and calculation. The plot of log f versus log H(f) in the high f region was found to have a slope of approximately −0.5 for both porous thick film and non-porous thin film, when the rate-limiting step was diffusion. Calculations showed the response time of porous thick film was 1/20 that of non-porous thin film when the grain diameter of the porous thick film was the same as the thickness of non-porous thin film. At 973 K, “break” response time (tb) of the resistive oxygen sensor was found by experiment to be 109 ms. It was concluded that the response of the resistive oxygen sensor prepared in this study was strongly controlled by diffusion at 923–1023 K, since the experiment revealed that the slope of plot of log f versus log H(f) in the high f region was approximately −0.5. At 923–1023 K, the diffusion coefficient of oxygen vacancy in porous ceria (DV) was expressed as follows: DV (m2s−1) = 5.78 × 10−4 exp(−1.94 eV/kT). At 1023 K, the surface reaction coefficient (K) was found to exceed 10−4 m/s.  相似文献   

6.
An optical waveguide (OWG) pH sensor with two thin guiding layers (composite OWG) was fabricated, and its application to sensing extremely low concentrations of ammonia was demonstrated. The highly sensitive element based on a titanium dioxide (TiO2) film was deposited onto the surface of a potassium ion (K+) exchanged glass OWG by RF sputtering. The surface of the TiO2 film was coated with a thin film of a pH indicator dye (bromothymol blue, BTB) by spin coating. With optimum thickness of BTB film at about 46 nm and of TiO2 films at 18–20 nm, this system proved to be an extremely sensitive ammonia sensor. The experimental results of the optimum conditions on BTB and TiO2 film thicknesses were close to theoretically calculated values. The sensor easily detected 1 parts per trillion (ppt) ammonia reversibly, and had a short response time. The present sensor is also characterized by low cost, simple structure and facile fabrication.  相似文献   

7.
Phase equilibria in the Ti-Co-Pt ternary system were measured through diffusion triple and alloy sampling. Based on the results from Electron Probe Microanalysis (EPMA) and X-ray diffraction (XRD) techniques, the isothermal sections of the Ti-Co-Pt system were constructed, which consist of 16 and 13 three-phased regions at 973 and 1173 K, respectively. A new ternary phase τ was detected, which contains 23.6–29.9 at% Pt at 973 K and 27.4–40.1 at% Pt at 1173 K. Furthermore, an invariant reaction between 973 and 1173 K was deduced, i.e. τ + Ti4Pt3 ↔ Ti3Pt + TiPt. By the way, the solubilities of Pt mainly substituting for Co in TiCo and TiCo3 respectively increase from 22.4 at% and 26.1 at% at 973 K to 23.8 at% and 33.1 at% at 1173 K.  相似文献   

8.
Interest on the Al–Ni equilibrium diagram along the latest years is associated with the attractive properties of its intermetallic phases, such as high thermal stability, high corrosion resistance and high strength to density ratio. The Transient Liquid Phase Bonding (TLPB) is a technological process which can be applied to manufacture new pieces and to perform reparations. Morphology, composition profiles, growth kinetic and hardness as a function of temperature and composition of the Intermetallic Layers (ILs) were analyzed, especially focused on solid–solid interactions during isothermal annealing in reactive diffusion couples Ni/Al (800–1170 °C). The study yields to the following association of the Al–Ni Intermetallic Phases (IPs) to the ILs: L1 (Al3Ni), L2 (Al3Ni2), L3 (Ni-poor AlNi), L4 (Ni-rich AlNi) and L5 (AlNi3). The composition ranges of L3 and L4 are 36–46 and 53–58 at% Al, respectively. Martensitic transformation was found in the half thickness of L4 (L4M and L4S) at 1170 °C. Kinetics show diffusion controlled growth for L2 and L5 and interface reaction control for L4 at 800–1170 °C, while L3 revealed a mixed kinetic behavior: parabolic at 800–1000 °C and linear at 1170 °C. The growth rate constants presented temperature dependence according to the Arrhenius model. Vickers microhardness values decrease with annealing temperature and Ni concentration for ILs, and put in evidence different mechanical properties of L3, L4M and L4S.  相似文献   

9.
Structural, magnetic, electrical, and magnetotransport properties have been carried out on the Ag-added La0.67Ba0.33MnO3/(TiO2)0.035 (LBT) (abbreviated by LBT/Agx,) composites. Ag addition has little influence on the magnetization or Curie temperature (TC), but decreases the resistivity (ρ) and sharps the ρ peak evidently. The ρ in the ferromagnetic (FM) metallic regime is proportional to T2, reflecting that the conductive mechanism mainly arises from the electron–electron scattering. In the paramagnetic (PM) insulating region, the ρ data fit well to the self-trapped small polaron hopping model. The ρT curves for x = 0.27 and 0.30 samples fit well with the phenomenological percolation approach, which is based on the phases segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. These excellent agreements highlight the dominant intrinsic behavior of LBT. In addition, from the magnetotransport measurements, a large magnetoresistance (MR) ratio up to 41% was obtained at 280 K, and 10 kOe for x = 0.27 sample. The good fits between the field dependence of MR and Brillouin function indicate that the MR behavior in the Ag-added LBT is induced by the spin-dependent hopping of the electrons among the spin clusters, and which is related to the increase and growth of the FM spin clusters.  相似文献   

10.
A novel Pt–Ti–O-gate Si–metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen gas sensor has been proposed by Usagawa and Kikuchi (2010) [1]. The sensors consist of unique gate structures composed of Ti and oxygen accumulated regions around Pt grains on top of a novel mixing layer of nanocrystalline TiOx and superheavily oxygen-doped amorphous Ti formed on SiO2/Si substrates. The optimum Pt/Ti thickness and annealing conditions for most hydrogen safety monitoring sensor systems are obtained by annealing Pt(15 nm)/Ti(5 nm)-gate Si–MOS structures in air around 400 °C for 2 h. One of the advantages of the Pt–Ti–O-gate Si–MISFETs after 10 min of air-diluted 1000-ppm hydrogen exposure at 115 °C are reproducible and uniform threshold voltage of Vth in addition to large sensing amplitudes at a practically important hydrogen concentration range between 100 ppm and 1%. The analysis of device characteristics of the Pt–Ti–O-gate Si–MISFETs hydrogen sensors concludes that the oxidation process of the Ti layer is consistently explained by an oxidation model that the oxygen invasion into Ti layer comes from open air through Pt grain boundaries and at the same time Ti will evacuate into the Pt surface through Pt grain boundaries. During the course of this process, the invading oxygen will be balanced with the evacuating Ti so that the Ti layer keeps nearly the same thickness with the as grown states. Ti and oxygen will remains around Pt grains named Ti and oxygen merged corridors.  相似文献   

11.
Singlet and triplet potential energy surfaces for the CH3O2 with I reaction have been investigated computationally to propose the reaction mechanisms and possible products. Multichannel RRKM theory and transition-state theory have been used to compute the overall and individual rate constants at 200–3000 K and 10−14–1014 Torr. On the singlet PES, addition-elimination, substitution and H-abstraction mechanisms are located, and the addition-elimination mechanism is dominant. At 70 Torr with N2 as bath gas, IM1(CH3OOI) formed by collisional stabilization is dominated at 200–300 K, whereas CH2O and HIO are the major products at the temperatures between 350 and 3000 K; The title reaction exhibits the typical falloff behavior. The results show that temperature and pressure affect the yield of products.Furthermore, the predicted rate constants at 298 K 70 Torr of N2 agree well with the available experimental values. On the triplet PES, the most favorable product should be CH3I + O2(3Σ) at atmospheric condition. Other two pathways on the triplet PES will not compete with the pathways on the singlet PES in kinetically and thermodynamically.  相似文献   

12.
The properties of PZN–PT and PMN–PT single crystals of varying compositions and orientations have been investigated. Among the various compositions studied, [0 0 1]-optimally poled PZN-(6–7)%PT and PMN-30%PT exhibit superior dielectric and piezoelectric properties, with KT  6800–8000, d33  2800 pC/N, d31  −(1200–1800) pC/N for PZN-(6–7)%PT; and KT = 7500–9000, d33 = 2200–2500 pC/N and d31 = −(1100–1400) pC/N for PMN-30%PT. These two compositions are also fairly resistant to over-poling. The [0 0 1]-poled electromechanical coupling factors (k33, k31 and kt) are relatively insensitive to crystal composition. [0 1 1]-optimally poled PZN-7%PT single crystal also exhibits extremely high d31 values of up to −4000 pC/N with k31  0.90–0.96. While [0 1 1]-poled PZN-7%PT single crystal becomes over-poled with much degraded properties when poled at and above 0.6 kV/mm, PZN-6%PT crystal shows no signs of over-poling even when poled to 2.0 kV/mm. The presence of a certain amount (i.e., 10–15%) of orthorhombic phase in a rhombohedral matrix has been found to be responsible for the superior transverse piezoelectric properties of [0 1 1]-optimally poled PZN-(6–7)%PT. The present work shows that flux-grown PZN–PT crystals exhibit superior and consistent properties and improved over-poling resistance to flux-grown PMN–PT crystals and that, for or a given crystal composition, flux-grown PMN–PT crystals exhibit superior over-poling resistance to their melt-grown counterparts.  相似文献   

13.
An alternating dielectric multi-layer device was fabricated and tested in the laboratory to show that dielectric mirrors of alternating high/low refractive index materials, based on the design of distributed Bragg reflector (DBR) for vertical cavity surface emission lasers (VCSELs), can be used in designing SPR biochemical sensors. The thickness, number of layers, and other design parameters of the device used were optimized using optical admittance loci analysis. The proof-of-concept device was fabricated with a symmetrical structure using Au/(SiO2/TiO2)4/Au.Using a 632 nm-wavelength light source on a BK7 coupling prism, our laboratory tests showed that, under water, there was an 11.5° shift in resonant peak position towards the critical angle (from 74° in a conventional single-layer Au film), and a 3.25 times decrease in FWHM (the half-peak width). Our design also resulted in a wider dynamic range of up to a 1.50 refractive index unit (RIU), compared to 1.38 RIU in a conventional single-layer Au film. Using glucose solutions in ddH2O, the calculated resolution was 1.28 × 10−5. The calculated intensity sensitivity was 10 000 a.u./RIU, about twice the improvement over the conventional single-layer Au film.  相似文献   

14.
Interfering effects of NO and SO2 gases on CO2 sensing performance of the solid state galvanic cell, Pt, O2, CO2, Na2CO3–BaCO3ǀǀNa+ǀǀNa2Ti6O13–TiO2, O2, Pt were investigated at 673 K and 773 K. In the interfering gases concentration ranges of 50–150 ppm NO and 5–15 ppm SO2, exposure to NO gas guaranteed a recovery of electromotive force (EMF) from the relatively small EMF deviation. However, SO2 gas remarkably degraded the performance of the sensor arising from the formation of sulfate on the sensing electrode. Na2CO3–SnO2, Na2CO3–SnO2–Cu, and Na2CO3–SnO2–CuO were heat-treated and adopted as filter materials adjacent to the sensing electrode. The EMF response of the CO2 sensors with filters was compared in terms of filter efficiency. Among them, Na2CO3–SnO2–CuO filter showed the most promising characteristics in suppressing NO and SO2 gas interference.  相似文献   

15.
This work explores the synthesis of nanocrystalline MgO:Cr3+ (1–9 mol%) nanophosphors via solution combustion route at 400 °C. The nanophosphors were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infra-Red (FTIR) spectroscopy. PXRD results confirm cubic phase and SEM micrographs indicate that the particles are highly porous and agglomerated. The TEM images show that the powder consists of spherical particles of size ∼5–15 nm. Upon 356 nm excitation the emission profile of MgO:Cr3+ exhibits an emission peak at 677 nm due to 2Eg  4A2g transition. It was observed that PL intensity increases with increase in Cr3+ concentration and highest PL intensity was observed for 3 mol% doped sample and afterward it decreases, attributed to concentration quenching. The resultant CIE chromaticity co-ordinates in the white region make the present phosphor highly useful for display applications and also for white light-emitting diodes (WLEDs).  相似文献   

16.
GdVO4:Eu3+, Bi3+ with tetragonal phase has been successfully synthesized by employing efficient irradiations. The assembly of composites with fine grains based on acoustic energy and microwave radiation requires low temperature (90 °C) and short reaction time (60 min). All the compounds exhibited red emissions and they can be sensitized through the doped Bi3+ ions. The dependence of pH changes and doping concentration on the fluorescence features has been discussed. The photoluminescence measurements show that the optical properties achieved the best results at pH = 9 for GdVO4:Eu3+(5 mol%), Bi3+(1 mol%) or pH = 7 for GdVO4:Eu3+.  相似文献   

17.
In this study, an approach based on artificial neural network (ANN) was proposed to predict the experimental cutting temperatures generated in orthogonal turning of AISI 316L stainless steel. Experimental and numerical analyses of the cutting forces were carried out to numerically obtain the cutting temperature. For this purpose, cutting tests were conducted using coated (TiCN + Al2O3 + TiN and Al2O3) and uncoated cemented carbide inserts. The Deform-2D programme was used for numerical modelling and the Johnson–Cook (J–C) material model was used. The numerical cutting forces for the coated and uncoated tools were compared with the experimental results. On the other hand, the cutting temperature value for each cutting tool was numerically obtained. The artificial neural network model was used to predict numerical cutting temperatures by means of the numerical cutting forces. The best results in predicting the cutting temperature were obtained using the network architecture with a hidden layer which has seven neurons and LM learning algorithm. Finally, the experimental cutting temperatures were predicted by entering the experimental cutting forces into a formula obtained from the artificial neural networks. Statistical results (R2, RMSE, MEP) were quite satisfactory. This demonstrates that the established ANN model is a powerful one for predicting the experimental cutting temperatures.  相似文献   

18.
Phosphate glasses with chemical compositions of 74.5NaH2PO4–20ZnO–5Li2O–0.5Sm2O3 and 74NaH2PO4–20ZnO–5Li2O–0.5Sm2O3–0.5Eu2O3 were synthetized by melt quenching method. We investigated the influence of Sm3+/Eu3+ doping on the optical properties of phosphate glasses. X-ray Diffraction indicates that the samples have an amorphous structure. DSC measurements show a good thermal stability of phosphate glasses. Using the absorption spectra, Judd–Ofelt analysis was applied to absorption bands of Sm3+ (4f5) to carry out the three phenomenological parameters of Judd–Ofelt (JO). According to the obtained values of Ω2, Ω4 and Ω6, some radiative properties were theoretically determined. We report both the photoluminescence (PL) and the PL lifetime measurements of a prominent emission transition 4G5/2  6H5/2 (604 nm) of Sm3+ both in absence and in presence of Eu3+. It is shown that Eu3+ ions act as sensitizers for Sm3+ ions and contribute largely to the improvement of the radiative properties of phosphate glasses. An improvement of the PL lifetime value after adding Eu3+ ions (4.58 ms) is reported. The predicted lifetime (τrad) calculated by Judd–Ofelt theory and the experimental lifetime (τmeas) for the prepared phosphate glasses were compared with those of other works. Photoluminescence (PL) intensity of 4G5/2  6H5/2 (604 nm), 4G5/2  6H7/2 (567 nm), 4G5/2  6H9/2 (650 nm) and 4G5/2  6H11/2 (706 nm) and the quantum efficiency (η) for the excited 4G5/2 level were enhanced after adding Eu3+. The radiative properties obtained for (Sm, Eu) codoped phosphate glasses suggest that the present material can be a potential candidate for the development of color display devices.  相似文献   

19.
《Displays》2014,35(5):279-286
Dysprosium doped di-strontium magnesium di-silicate namely Sr2MgSi2O7:Dy3+ phosphor was prepared by the solid state reaction method. The phase structure, surface morphology, particle size, elemental analysis was analyzed by using XRD, TEM, EDX and FTIR techniques. The EDX and FTIR spectra confirm the present elements in Sr2MgSi2O7:Dy3+ phosphor. The optical properties of Sr2MgSi2O7:Dy3+ phosphor was investigated utilizing thermoluminescence (TL), photoluminescence (PL), long lasting phosphorescence and mechanoluminescence (ML). Under the ultraviolet excitation, the emission spectra of Sr2MgSi2O7:Dy3+ phosphor are composed of a broad band and the characteristic emission of Dy3+ peaking at 470 nm (blue), 575 nm (yellow) and 678 nm (red), originating from the transitions of 4F9/2  6H15/2, 4F9/2  6H13/2 and 4F9/2  6H11/2. CIE color coordinates of Sr2MgSi2O7:Dy3+ are suitable as white light emitting phosphor. Decay graph indicate that this phosphor also contains fast decay and slow decay process. The peak of ML intensity increases linearly with increasing impact velocity of the moving piston. The possible mechanism of this white light emitting long lasting phosphor is also investigated.  相似文献   

20.
Integrated optical Mach–Zehnder interferometers (MZIs) composed of graded-index channel waveguides are often used as chemical/biological sensors. Such MZIs have a relatively low sensitivity because the graded-index active arms have a weak evanescent field. To improve the sensitivity, a channel-planar composite optical waveguide (COWG) is proposed as a substitute for the graded-index active arm. An actual channel-planar COWG was fabricated by sputtering a tapered TiO2 film onto a straight glass channel waveguide prepared by the potassium ion exchange method. Measurement of the evanescent absorption of the dye solution demonstrated a significantly enhanced evanescent field over the TiO2 film region caused by adiabatic transition of the guided mode between the channel waveguide and TiO2 film. Theoretical calculations show that the sensitivity of a glass-based MZI can increase 71 times when the COWG active arm contains a 25 nm thick and 5 mm long tapered TiO2 film. The use of a COWG as the active arm of a glass-based MZI also allows for elimination of the low-index buffer layer because of a large difference in evanescent field between the COWG and channel waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号