首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use a three-dimensional multiphase lattice-Boltzmann model to study basic operations such as transport, merging and splitting of nanoliter water droplets actuated by electrowetting in digital microfluidic devices. In a first step, numerical and analytical predictions for the droplet transport velocity are compared and very good agreement is obtained for a wide range of contact angles. The same algorithm is employed then to study the dynamics of the splitting processes at different contact angles and different geometries of the cell. The configuration of the liquid droplet involved in a splitting process and the dependence of the splitting time on the transport velocity are also investigated and phenomenological laws describing these processes are also proposed.  相似文献   

2.
Electrowetting phenomenon in parallel plate microchannel is investigated numerically. The current study advances accuracy of numerical modeling of electrowetting by considering dynamic behavior of the tri-phase contact line using molecular-kinetic theory. This theory in conjunction with volume of fluid method, which has been proved to be a powerful approach for free surface modeling, is used to simulate the phenomenon. By comparing the results against experimental data from literature, the simulation demonstrates significant improvement in results. It is concluded that ignoring dynamic features of wetting leads to overestimation of the effect of electrowetting actuation on various parameters including contact angle, aspect ratio and velocity of the droplet.  相似文献   

3.
Here, we report a single-point detection method for the determination of dynamic surface conditions inside microfluidic channels. The proposed method is based on monitoring fluorescence amplitude as a function of the convolution of a laser beam with segmented flow consisting of two immiscible liquids, one containing fluorescent dye. The fluorescence amplitude is determined by the flow rate and the droplet shape, which is affected by the channel surface properties. We modeled the interaction of a droplet and a laser beam via computer-aided design software, using the laser beam location in relation to the droplet shape as a parameter. The method was applied to fused silica capillaries with both unmodified and modified surfaces, with segmented flow exhibiting water contact angles of ≈?30° and ≈?100°, respectively. The method allows discrimination between hydrophillic and hydrophobic surfaces, as well as the quality of the treatment. The results were verified using fluorescence imaging of the droplets via a stroboscopic technique. We also applied this method to the analysis of microfabricated channels with non-circular cross sections. We demonstrated that the technique enables the determination of the hydrophobicity of channel surfaces, a crucial property required for the generation of segmented flow or emulsions for applications such as digital PCR.  相似文献   

4.
In this article, a multiphysics approach is used to develop a model for microdroplet motion and dynamics in contemporary electrocapillary-based digital microfluidic systems. Electrostatic and hydrodynamic pressure effects are combined to calculate the driving and opposing forces as well as the moving boundary of the microdroplet. The proposed methodology accurately predicts the microdroplet electrohydrodynamics which is crucial for the design, control and fabrication of such devices. The results obtained from the model are in excellent agreement with expected trends and experimental results.  相似文献   

5.
In this paper a method is presented for the fabrication of micro-channel networks in glass with integrated and insulated gate electrodes to control the zeta-potential at the insulator surface and therewith the electro-osmotic flow (EOF). The fabrication of the electrodes is a sequence of photolithography, etching and thin film deposition steps on a glass substrate, followed by chemical mechanical polishing (CMP) and subsequently direct thermal bonding to a second glass plate to form closed micro-channels. Plasma enhanced chemical vapor deposition (PECVD) SiO2-layers as insulating material between the electrodes and micro-channels and different electrode materials are examined with respect to a high bonding temperature to obtain an optimal insulating result. A CMP process for the reduction of the SiO2 topography and roughness is studied and optimized in order to obtain a surface that is smooth enough to be directly bondable to a second glass plate.  相似文献   

6.
An innovative and simple microfabrication method for digital microfluidics is presented. In this method, devices are formed from copper substrates or gold compact disks using rapid marker masking to replace photolithography. The new method is capable of forming devices with inter-electrode gaps as small as 50 μm. Saran™ wrap (polyethylene film) and commercial water repellants were used as dielectric and hydrophobic coatings, respectively, to replace commonly used and more expensive materials such as parylene-C and Teflon-AF. Devices formed by the new method enabled single- and two-plate actuation of droplets with volumes of 1–12 μL. Fabricated devices were successfully tested for droplet manipulation, merging and splitting. We anticipate that this fabrication method will bring digital microfluidics within the reach of any laboratory with minimal facilities. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This review provides an overview of major microengineering emulsification techniques for production of monodispersed droplets. The main emphasis has been put on membrane emulsification using Shirasu Porous Glass and microsieve membrane, microchannel emulsification using grooved-type and straight-through microchannel plates, microfluidic junctions and flow focusing microfluidic devices. Microfabrication methods for production of planar and 3D poly(dimethylsiloxane) devices, glass capillary microfluidic devices and single-crystal silicon microchannel array devices have been described including soft lithography, glass capillary pulling and microforging, hot embossing, anisotropic wet etching and deep reactive ion etching. In addition, fabrication methods for SPG and microseive membranes have been outlined, such as spinodal decomposition, reactive ion etching and ultraviolet LIGA (Lithography, Electroplating, and Moulding) process. The most widespread application of micromachined emulsification devices is in the synthesis of monodispersed particles and vesicles, such as polymeric particles, microgels, solid lipid particles, Janus particles, and functional vesicles (liposomes, polymersomes and colloidosomes). Glass capillary microfluidic devices are very suitable for production of core/shell drops of controllable shell thickness and multiple emulsions containing a controlled number of inner droplets and/or inner droplets of two or more distinct phases. Microchannel emulsification is a very promising technique for production of monodispersed droplets with droplet throughputs of up to 100?l?h?1.  相似文献   

8.
The rapid translation of research from bench to bedside, as well as the generation of commercial impact, has never been more important for both academic and industrial researchers. It is therefore unsurprising that more and more microfluidic groups are investigating research using a wide range of thermoplastics which can be readily translated to large-scale manufacturing, if the technology is taken to commercialisation. While structuring, via additive or subtractive manufacturing, is becoming relatively easy through the use of commercial-grade devices, reliable and fast assembly remains a challenge. In this article, we propose an innocuous and cost-effective, under 2-min technique which enables the bonding of multiple poly(methyl methacrylate) layers. This bonding technique relies on the application of small amounts (10 µl/cm2) of ethanol, low temperatures (70 °C) and relatively low pressures (~1.6 MPa). Our characterisation analysis shows that using a bonding time of 2 min is enough to produce a strong bond able to withstand pressures always above 6.2 MPa (with mean of 8 MPa, highest reported in the literature), with minimal channel deformation (<5%). This technique, which we demonstrate on assembly comprising up to 19 layers, presents an exciting improvement in the field of rapid prototyping of microfluidic devices, enabling extremely fast design cycles in microfluidic research with a material compatible with mass manufacturing, thus allowing a smoother transition from the laboratory to the market. Beyond the research community, this robust prototyping technique has the potential to impact on the deliverability of other scientific endeavours including educational projects and will directly fuel the fluidic maker movement.  相似文献   

9.
In this paper, we present a digital microfluidic droplet sorting platform to achieve automated droplet sorting based on fluorescent detection. We design and fabricate a kind of digital microfluidic chip for manipulating nano-liter-sized liquid droplets, and the chip is integrated with a fluorescence-initiated feedback system for real-time sorting control. The driving and sorting characteristics of fluorescent droplets encapsulating fluorescent-labeled particles are studied on this platform. The droplets dispensed from on-chip reservoir electrode are transported to a fluorescence detection site and sorted according to their fluorescence signals. The fluorescent droplets and non-fluorescent droplets are successfully separated and the number of fluorescent particles inside each droplet is quantified by its fluorescent intensity. We realize droplet sorting at 20 Hz and obtain a linear relationship between the fluorescent particle concentrations and the fluorescence signals. This work is easily adapted for sorting out fluorescent-labeled microparticles, cells and bacteria and thus has the potential of quantifying catalytic or regulatory bio-activities.  相似文献   

10.
This paper introduces a passive degassing mechanism using textured surfaces to trap and transport bubbles, and then using hydrophobic porous membranes to vent out bubbles in a microfluidic system. The bubble trapping ability is achieved by creating nanostructures to promote bubble nucleation and coalescence on the sidewalls of KOH-etched concave pits in a silicon substrate. The substrate, which is bonded with a porous membrane, is placed in a liquid system with chemically generated CO2 bubbles to examine the degassing ability. The results validate that the bubbles can be easily trapped on the surfaces with nanostructures, and then vented through the porous membrane. Our proposed approach possesses the advantage of simple fabrication, great structure robustness, and effective bubble trapping and removing abilities, which show their great potential as economic, passive means of preventing the gas byproducts from blocking surfaces and improving the efficiency of microfluidic systems during operations.  相似文献   

11.
A new and easy-to-use method that allows for mold-free and rapid prototyping of microfluidic devices, comprising channels, access holes, and surface-modified patterns, is presented. The innovative method is based on direct photolithographic patterning of an off-stoichiometry thiol-ene (OSTE) polymer formulation, tailor-made for photolithography, which offers unprecedented spatial resolution and allows for efficient, robust and reliable, room temperature surface modification and glue-free, covalent room temperature bonding. This mold-free process does not require clean room equipment and therefore allows for rapid, i.e., less than one hour, design-fabricate-test cycles, using a material suited for larger-scale production. The excellent photolithographic properties of this new OSTE formulation allow patterning with unprecedented, for thiol-ene polymer systems, resolution in hundreds of micrometers thick layers, 200 μm thick in this work. Moreover, we demonstrated robust, covalent and spatially controlled modification of the microchannel surfaces with an initial contact angle of 76° by patterning hydrophobic/hydrophilic areas with contact angles of 102° and 43°, respectively.  相似文献   

12.
13.
A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to separate mixtures of particles and live cells simultaneously. Two species of cells, including Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic field gradients, magnetic buoyancy forces exerted on particles and cells lead to size-dependent deflections from their laminar flow paths and result in spatial separation. We report the design, modeling, fabrication and characterization of the sorting device. This scheme is simple, low-cost and label-free compared to other existing techniques.  相似文献   

14.
The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA–PDMS–PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid leakage at an operational flow rate of 9 μl/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10 kPa and complete valving occurred at 14 kPa for ~100 μm by 100 μm channel cross-sections.  相似文献   

15.
The behaviour of blood flow in relation to microchannel surface roughness has been investigated. Special attention was focused on the techniques used to fabricate the microchannels and on the apparent viscosity of the blood as it flowed through these microchannels. For the experimental comparison of smooth and rough surface channels, each channel was designed to be 10 mm long and rectangular in cross-section with aspect ratios of ≥100:1 for channel heights of 50 and 100 μm. Polycarbonate was used as the material for the device construction. The shims, which created the heights of the channels, were made of polyethylene terephthalate. Surface roughnesses of the channels were varied from R z of 60 nm to 1.8 μm. Whole horse blood and filtered water were used as the test fluids and differential pressures ranged from 200 to 5,000 Pa. The defibrinated horse blood was treated further to prevent coagulation. The results indicate that a surface roughness above an unknown value lowers the apparent viscosity of blood dramatically due to boundary effects. Furthermore, the roughness seemed to influence both water and whole blood almost equally. A set of design rules for channel fabrication is also presented in accordance with the experiments performed.  相似文献   

16.
The development of multilayer soft lithography methodology has seen polydimethysiloxane (PDMS) as the preferred material for the fabrication of microfluidic devices. However, the functionality of these PDMS microfluidic chips is often limited by the poor chemical resistance of PDMS to certain solvents. Here, we propose the use of a photocurable perfluoropolyether (PFPE), specifically FOMBLIN® MD40 PFPE, as a candidate material to provide a solvent-resistant buffer layer to make the device substantially impervious to chemically induced swelling. We first carried out a systematic study of the solvent resistance properties of FOMBLIN® MD40 PFPE as compared with PDMS. The comparison presented here demonstrates the superiority of FOMBLIN® MD40 PFPE over PDMS in this regard; moreover, the results permitted to categorize solvents in four different groups depending on their swelling ratio. We then present a step-by-step recipe for a novel fabrication process that uses multilayer lithography to construct a comprehensive solvent-resistant device with fluid and control channels integrated with a valve structure and also permitting easy establishment of outside connections.  相似文献   

17.
Current standard procedures for fabrication of microfluidic devices combine polydimethylsiloxane (PDMS) replica molding with subsequent plasma treatment to obtain an irreversible sealing onto a glass/silicon substrate. However, irreversible sealing introduces several limitations to applications and internal accessibility of such devices as well as to the choice of materials for fabrication. In the present work, we describe and characterize a reliable, flexible and cost effective approach to fabricate devices that reversibly adhere to a substrate by taking advantage of magnetic forces. This is shown by implementing a PDMS/iron micropowder layer aligned onto a microfluidic layer and coupled with a histology glass slide, in union with either temporary or continuous use of a permanent magnet. To better represent the complexity of microfluidic devices, a Y-shaped configuration including lower scale parallel channels on each branch has been employed as reference geometry. To correctly evaluate our system, current sealing methods have been reproduced on the reference geometry. Sealing experiments (pressure control, flow control and hydraulic characterization) have been carried out, showing consistent increases in terms of maximum achievable flow rates and pressures, as compared to devices obtained with other available reversible techniques. Moreover, no differences were detected between cells cultured on our magnetic devices as compared to cells cultured on permanently sealed devices. Disassembly of our devices for analyses allowed to stain cells by hematoxylin and eosin and for F-actin, following traditional histological processes and protocols. In conclusion, we present a method allowing reversible sealing of microfluidic devices characterized by compatibility with: (i) complex fluidic layer configurations, (ii) micrometer sized channels, and (iii) optical transparency in the channel regions for flow visualization and inspection.  相似文献   

18.
Microsystem Technologies - Polydimethylsiloxane (PDMS) is widely used as a channel material in microfluidic applications. Due to its highly elastomeric characteristics, PDMS absorbs the acoustic...  相似文献   

19.
With increasingly digitization, more and more information is collected from individuals and organizations, leading to several privacy concerns. These risks are further heightened in the mobile realm as data collection can occur continuously and ubiquitously. When individuals use their own devices in work settings, these issues become concerns for organization as well. The question then is how to ensure individuals perform proper information protection behaviors on mobile devices. In this research, we develop a model of mobile information protection based on an integration of the Theory of Planned Behavior and the information privacy literature to explore the antecedents of the attitude of individuals towards sharing information on their mobile devices, their intentions to use protective settings, and their actual practices. The model is tested with data from 228 iPhone users. The results indicate that mobile information protection intention leads to actual privacy settings practice, and that attitude towards information sharing and mobile privacy protection self-efficacy affect this intention. Determinants of attitude towards information sharing include mobile privacy concern and trust of the mobile platform. Finally, prior invasion experience is related to privacy concern. These findings provide insights into factors that can be targeted to enhance individuals’ protective actions to limit the amount of digital information they share via their smartphones.  相似文献   

20.
Microfluidic electrochemical sensing has been considered to be highly efficient. However, we showed, by using numerical simulations in this study, that a planar electrode formed on the bottom of a microchannel is exposed to only a small fraction of analytes in amperometric detection. We also showed that three-dimensional (3D) micropillar electrodes significantly improve the detection current. The practical performance was evaluated using 3D micropillar electrodes fabricated by photolithography. The output current increased as the diameters of the micropillars decreased, as predicted by the simulations. It is noteworthy that the current enhancements obtained with the 3D electrodes were larger than those expected from an increase in the surface area. Further increase in current was achieved by electrical deposition of nanoporous gold-black onto the surface of the 3D electrode: when a 3D electrode with micropillars 30 μm in diameter was used, the output current was approximately 20 times that obtained with a 2D electrode without modification. The applicability of the micropillar electrodes was demonstrated in electrochemical enzyme-linked immunosorbent assay (ELISA) of bone metabolic marker proteins. Although an increase in the surface area of the electrode leads to more noise in general, there is no significant difference in the signal-to-noise ratio between the modified 3D electrode and the 2D electrode without modification in the ELISA experiments. This nanoporous micropillar electrode could potentially be a useful component for the development of on-site diagnosis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号