首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The high specificity of T7 RNA polymerase (RNAP) for its promoter sequence is mediated, in part, by a specificity loop (residues 742-773) that projects into the DNA binding cleft (1). Previous work demonstrated a role for the amino acid residue at position 748 (N748) in this loop in discrimination of the base pairs (bp) at positions -10 and -11 (2). A comparison of the sequences of other phage RNAPs and their promoters suggested additional contacts that might be important in promoter recognition. We have found that changing the amino acid residue at position 758 in T7 RNAP results in an enzyme with altered specificity for the bp at position -8. The identification of two amino acid:base pair contacts (i.e., N748 with the bp at -10 and -11, and Q758 with the bp at -8) provides information concerning the disposition of the specificity loop relative to the upstream region of the promoter. The results suggest that substantial rearrangements of the loop (and/or the DNA) are likely to be required to allow these amino acids to interact with their cognate base pairs during promoter recognition.  相似文献   

4.
5.
6.
7.
An open question in computational molecular biology is whether long-range correlations are present in both coding and noncoding DNA or only in the latter. To answer this question, we consider all 33301 coding and all 29453 noncoding eukaryotic sequences--each of length larger than 512 base pairs (bp)--in the present release of the GenBank to dtermine whether there is any statistically significant distinction in their long-range correlation properties. Standard fast Fourier transform (FFT) analysis indicates that coding sequences have practically no correlations in the range from 10 bp to 100 bp (spectral exponent beta=0.00 +/- 0.04, where the uncertainty is two standard deviations). In contrast, for noncoding sequences, the average value of the spectral exponent beta is positive (0.16 +/- 0.05) which unambiguously shows the presence of long-range correlations. We also separately analyze the 874 coding and the 1157 noncoding sequences that have more than 4096 bp and find a larger region of power-law behavior. We calculate the probability that these two data sets (coding and noncoding) were drawn from the same distribution and we find that it is less than 10(-10). We obtain independent confirmation of these findings using the method of detrended fluctuation analysis (DFA), which is designed to treat sequences with statistical heterogeneity, such as DNA's known mosaic structure ("patchiness") arising from the nonstationarity of nucleotide concentration. The near-perfect agreement between the two independent analysis methods, FFT and DFA, increases the confidence in the reliability of our conclusion.  相似文献   

8.
9.
10.
11.
12.
A significant fraction of the bases in a folded, structured RNA molecule participate in noncanonical base pairing interactions, often in the context of internal loops or multi-helix junction loops. The appearance of each new high-resolution RNA structure provides welcome data to guide efforts to understand and predict RNA 3D structure, especially when the RNA in question is a functionally conserved molecule. The recent publication of the crystal structure of the "Loop E" region of bacterial 5S ribosomal RNA is such an event [Correll CC, Freeborn B, Moore PB, Steitz TA, 1997, Cell 91:705-712]. In addition to providing more examples of already established noncanonical base pairs, such as purine-purine sheared pairings, trans-Hoogsteen UA, and GU wobble pairs, the structure provides the first high-resolution views of two new purine-purine pairings and a new GU pairing. The goal of the present analysis is to expand the capabilities of both chemical probing and phylogenetic analysis to predict with greater accuracy the structures of RNA molecules. First, in light of existing chemical probing data, we investigate what lessons could be learned regarding the interpretation of this widely used method of RNA structure probing. Then we analyze the 3D structure with reference to molecular phylogeny data (assuming conservation of function) to discover what alternative base pairings are geometrically compatible with the structure. The comparisons between previous modeling efforts and crystal structures show that the intricate involvements of ions and water molecules in the maintenance of non-Watson-Crick pairs render the process of correctly identifying the interacting sites in such pairs treacherous, except in cases of trans-Hoogsteen A/U or sheared A/G pairs for the adenine N1 site. The phylogenetic analysis identifies A/A, A/C, A/U and C/A, C/C, and C/U pairings isosteric with sheared A/G, as well as A/A and A/C pairings isosteric with both G/U and G/G bifurcated pairings. Thus, each non-Watson-Crick pair could be characterized by a phylogenetic signature of variations between isosteric-like pairings. In addition to the conservative changes, which form a dictionary of pairings isosterically compatible with those observed in the crystal structure, concerted changes involving several base pairs also occur. The latter covariations may indicate transitions between related but distinctive motifs within the loop E of 5S ribosomal RNA.  相似文献   

13.
14.
Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme.  相似文献   

15.
There are many examples of RNA molecules in which the secondary structure has been strongly conserved during evolution, but the base sequence is much less conserved, e.g., transfer RNA, ribosomal RNA, and ribonuclease P. A model of compensatory neutral mutations is used here to describe the evolution of the base sequence in RNA helices. There are two loci (i.e., the two sides of the pair) with four alleles at each locus (corresponding to A, C, G, U). Watson-Crick base pairs (AU, CG, GC, and UA) are each assigned a fitness 1, whilst all other pairs are treated as mismatches and assigned fitness 1-s. A population of N diploid individuals is considered with a mutation rate of u per base. For biologically reasonable parameter values, the frequency of mismatches is always small but the frequency of the four matching pairs can vary over a wide range. Using a diffusion model, the stationary distribution for the frequency x of any of the four matching pairs is calculated. The shape depends on the combination of variables beta = 8Nu2/9s. For small beta, the distribution diverges at the two extremes, x = 0 and x = 1-z, where z is the mean frequency of mismatches. The population typically consists almost entirely of one of the four types of matching pairs, but occasionally makes shifts between the four possible states. The mean rate at which these shifts occur is calculated here. The effect of recombination between the two loci is to decrease the probability density at intermediate x, and to increase the weight at the extremes. The rate of transition between the four states is slowed by recombination (as originally shown by Kimura in a two-allele model with irreversible mutation). A very small recombination rate r approximately u2/s is sufficient to increase the mean time between transitions dramatically. In addition to its application to RNA, this model is also relevant to the 'shifting balance' theory describing the drift of populations between alternative equilibria separated by low fitness valleys. Equilibrium values for the frequencies of the different allele combinations in an infinite population are also calculated. It is shown that for low recombination rates the equilibrium is symmetric, but there is a critical recombination rate above which alternative asymmetric equilibria become stable.  相似文献   

16.
17.
18.
The ability of single-stranded DNA oligomers to form adjacent triplex and duplex domains with two DNA structural motifs was examined. Helix-coil transition curves and a gel mobility shift assay were used to characterize the interaction of single-stranded oligomers 12-20 nt in length with a DNA hairpin and with a DNA duplex that has a dangling end. The 12 nt on the 5'-ends of the oligomers could form a triplex structure with the 12 bp stem of the hairpin or the duplex portion of the DNA with a dangling end. The 3'-ends of the 17-20 nt strands could form Watson-Crick pairs to the five base loop of the hairpin or the dangling end of the duplex. Complexes of the hairpin DNA with the single-stranded oligomers showed two step transitions consistent with unwinding of the triplex strand followed by hairpin denaturation. Melting curve and gel competition results indicated that the complex of the hairpin and the 12 nt oligomer was more stable than the complexes involving the extended single strands. In contrast, results indicated that the extended single-stranded oligomers formed Watson-Crick base pairs with the dangling end of the duplex DNA and enhanced the stability of the adjacent triplex region.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号