首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
用丙烯酸(ARc)对壳聚糖(CS)进行化学改性,合成反应中问体壳聚糖衍生物CS-ARc,进一步合成不同配比的CS-ARc与N-异丙基丙烯酰胺(NIPA)的共聚凝胶P(CS-AAc-NIPA),通过红外光谱和元素分析等表征了产物的结构和组成,并研究了P(CS—ARc-NIPA)凝胶在水中和细胞培养基中的溶胀性能.结果表明共聚凝胶在水中和培养基中均显示较好的温度敏感性.对P(CS-ARc-NIPA)共聚凝胶进行细胞培养研究发现,其表面可成功种植成纤维细胞(L929),细胞贴附生长情况良好,表明材料具有很好的细胞相容性.当环境温度降低后,共聚凝胶发生疏水.亲水变化,导致其表面细胞自动脱附,从而避免了使用酶解法脱附细胞造成的细胞功能损伤.’  相似文献   

2.
温度敏感型可生物降解高分子凝胶的研究进展   总被引:1,自引:0,他引:1  
温度敏感型高分子凝胶因能随环境温度的变化发生可逆的相变或体积变化而被作为药物控释体系的载体之一,成为近年来研究的热点.但目前许多温敏型凝胶的非生物降解性限制了其在生物医学领域中的实际应用.因此,在温敏聚合物中引入生物降解性物质,使凝胶同时具有温敏和生物降解功能,将其用于药物释放体系,具有广阔的应用前景.结合近年来的研究报道,阐述了几类重要的温敏可生物降解凝胶及其在药物控制释放中的应用.  相似文献   

3.
合成了N-异丙基丙烯酰胺(NIPAAm)与葡聚糖的共聚水凝胶,利用红外光谱表征了单体和凝胶结构,研究了水凝胶在去离子水和细胞培养基中的温度响应性,并对凝胶进行了细胞培养和脱附研究.结果表明,共聚凝胶具有很好的温度敏感性和细胞相容性,可以通过控制温度变化,实现对细胞的无损伤脱附.  相似文献   

4.
以聚乙二醇(PEG)、4,4’-二苯基甲烷二异氰酸酯(MDI)、三羟甲基丙烷(TMP)为主要原料,分别采用1,4-丁二醇(BDO)、N-甲基二乙醇胺(MDEA)、2,2-二羟甲基丙酸(DMPA)为扩链剂,制备了3种聚氨酯水凝胶Hydrogel(a)、Hydrogel(b)、Hydrogel(c)。通过红外光谱、差示扫描量热分析、X射线衍射和溶胀实验对水凝胶的结构和性能进行了分析。研究结果表明,温度敏感链段(PEG)和pH敏感基团(-N(CH_3)-、-COOH)均成功地引入到了水凝胶分子链中;3种水凝胶的相转变温度分别为55℃、60℃和64℃,且合成后水凝胶中PEG的结晶结构仍然存在;当水溶液温度从45℃上升到60℃时,3种水凝胶的平衡溶胀度均显著减小,显示出温度敏感性;当pH从4.0上升到7.0时,Hydrogel(c)的平衡溶胀度从11.5增大到15.5,当pH从8.5上升到11.5时,Hydrogel(b)的平衡溶胀度从12.9减小到10.0,均显示出pH敏感性;在不同温度(25℃和65℃)和pH(2.5和11.5)的水溶液中反复溶胀,水凝胶Hydrogel(b)和Hydrogel(c)均表现出良好的可逆性和稳定性。  相似文献   

5.
6.
以乙二胺四乙酸酐(EDTAD)和丁二胺(BDA)为原料,通过酸酐的N-酰化开环反应得到侧链只含羧基的直链共聚物PEB-COOH,然后用N-羟基丁二酰亚胺(NHS)和二环己基碳二亚胺(DCC)活化PEB-COOH中的羧基,以重均分子量为500的氨基封端聚乙二醇(ATPEG500)为交联剂,制得单体间连接全部为酰胺键、侧链只含羧基的交联网络聚合物PEB-ATPEG500-COOH.pH敏感性测试表明,PEB-ATPEG500-COOH具有3个pH敏感范围,分别是pH=2~4、pH=6~7和pH=10~11,表现出明显的两性pH敏感性.研究了该水凝胶在37℃条件下分别在pH=2、7、11介质中的溶胀动力学,并对溶胀速率进行了详细分析.该网络聚合物可望成为一种集完全可降解性、pH敏感性和生物相容性于一身的新型两性pH敏感水凝胶.  相似文献   

7.
直接将N-异丙基丙烯酰胺(NIP)、丙烯酸和N,N′-甲叉双丙烯酰胺交联共聚合成了温度及pH值敏感水凝胶,包埋在此水凝胶中的抗结肠癌药物阿司匹林的释放随温度、介质pH值和药物制剂方式的变化而显著不同。在pH=7.4的介质中37℃时阿司匹林在水凝胶膜中的释放比25℃时快,而在37℃下pH=7.4的介质中阿司匹林的释放比pH=1.0快得多,后者在较长时间内仍释放一小部分,因此可将阿司匹林大部分定向到肠中释放。将膜剂改成粒剂后,可以获得较好的释放效果。  相似文献   

8.
局部抗肿瘤用PCL/F68载药紫杉醇纳米粒   总被引:2,自引:0,他引:2  
以可降解高分子聚己内酯(PCL)和泊洛沙姆188(F68)的共混材料作为疏水性药物紫杉醇的载体材料制成紫杉醇PCL/F68纳米粒,F68作为致孔剂和增溶剂,极大增加紫杉醇从载体中的释放,结果表明,对小鼠乳腺癌肺转移模型的抑瘤效果具有剂量依赖性,因此,紫杉醇PCL/F68纳米粒高剂量给药组小鼠肿瘤生长受到明显抑制,50%小鼠的肿瘤完全消退,紫杉醇PCL/F68纳米粒在肿瘤局部给药可以有效地抑制肿瘤的生长及转移。  相似文献   

9.
温度及pH敏感P (DMAEMA-g-PEG)水凝胶的合成与性能研究   总被引:1,自引:1,他引:0  
通过氧化还原自由基溶液聚合制备了聚甲基丙烯酸-N,N'-二甲氨基乙醋接枝聚乙二醉共聚水凝胶P (DMAEMA-g-PEG).实验结果表明,该水凝胶具有温度、pH敏感性及溶胀一退胀可逆性,其相转变温度在45℃左右.少童PEG大分子单体的加入,使水凝胶具有较高的溶胀率,但随着PEG大分子单体用量的增大,溶胀率反而下降;水凝...  相似文献   

10.
可生物降解聚天冬氨酸水凝胶的合成及性能   总被引:2,自引:0,他引:2  
采用两步交联法合成了可生物降解聚天冬氨酸水凝胶。首先用赖氨酸作为内交联剂对聚丁二酰亚胺进行开环反应,以侧基的形式引入聚合物链中,然后用戊二醛为表面交联剂进行进一步交联反应,从而形成水凝胶。研究了反应温度、时间、赖氨酸及戊二醛用量对水凝胶溶胀性能的影响。并对水凝胶的溶胀机理进行了初步的探讨,结果表明,溶胀过程属于非Fickian扩散。pH敏感性测试表明水凝胶在pH=3.4时收缩,而在pH<3.4和pH>3.4时溶胀,且在中性和碱性条件下的溶胀率大于在酸性条件下的溶胀率。  相似文献   

11.
温敏水凝胶对疏水性药物的装载及释放行为   总被引:3,自引:3,他引:0  
聚己内酯-聚乙二醇-聚己内酯(PCL-PEG-PCL)三嵌段共聚物的水溶液,具有低临界溶液温度(LCST),可制备温敏水凝胶,并可作为药物载体应用于生物医学领域。 使用 β-环糊精衍生物作为分子胶囊,在改善疏水性药物的水溶性的同时,提高 PCL-PEG-PCL 水凝胶对疏水性药物的装载和释放能力。 实验中槲皮素作为疏水性药物的模型,由于槲皮素分子与 β-环糊精络合形成微胶囊包装结构,大幅度提高了槲皮素的溶解度;此外槲皮素 / β-环糊精衍生物水溶液中 PCL-PEG-PCL 三嵌段聚合物,也快速溶解形成共混溶液,当温度提高到体温时,迅速变成凝胶状态。 在缓冲溶液中进行了槲皮素药物的释放实验,实现了 PCL-PEG-PCL 水凝胶对疏水性药物的缓释效果,在缓释过程中 β-环糊精衍生物也充当了药物释放载体的作用。  相似文献   

12.
以聚乙二醇2000为致孔剂,采用冷冻法合成了聚(N-异丙基丙烯酰胺-co-丙烯酰胺)温敏凝胶。结果表明,PEG2000作为致孔剂未参与反应,但可使凝胶生成多孔结构,导致溶胀率和响应速率提高。冷冻法由于使凝胶局部结构更加紧密,可使凝胶弹性模量大为增加。致孔剂法与冷冻法结合使用,可使温敏凝胶在加快响应速率的同时拥有较好的力学性能。  相似文献   

13.
以乙二胺四乙酸酐(EDTAD)和丁二胺(BDA)为原料,通过酸酐的N-酰化开环反应制备侧链含羧基的直链聚合物(pEDTAD-BDA);然后以二环己基碳二亚胺(DCC)活化pEDTAD-BDA中的羧基,以BDA为交联剂,制得单体间连接全部为酰胺键、侧链只含羧基的交联网络聚合物BDA-crosslinked-EDTAh-BDA。采用氢核磁共振(1H-NMR)、碳核磁共振(13C-NMR)和茚三酮显色法对pEDTAD-BDA的结构和数均分子量进行了表征。pH敏感性测试表明,BDA-crosslinked-pEDTAD-BDA在pH=12介质中的溶胀率约为pH=3和pH=7介质中溶胀率的5倍,表现出敏锐的pH响应性。该网络聚合物可望成为一种集完全可降解性、良好生物相容性和pH敏感性于一身的医用水凝胶材料。  相似文献   

14.
基于纤维素的水凝胶用途广泛,但其溶胀调控规律少见报道。文中以羟丙基甲基纤维素(HPMC)和羟乙基纤维素(HEC)为原料,以环氧氯丙烷(ECH)为交联剂,制备了系列纤维素基温敏水凝胶,研究了在温度作用下HPMC及ECH含量、p H、无机盐对水凝胶溶胀性能的影响。结果表明,制备的纤维素基水凝胶具有随温度变化可调的溶胀性能;HPMC含量越高,水凝胶收缩能力越强;ECH含量越高,水凝胶收缩能力越弱;达到溶胀平衡的水凝胶具有良好的力学性能以及p H和无机盐稳定性。  相似文献   

15.
采用壳聚糖(CS)、羟丙基甲基纤维素(HPMC)为原料制备了温敏性水凝胶,分析了CS含量、HPMC含量、HPMC黏度和甘油添加量对CS/HPMC的低临界溶解温度的影响。最优条件为CS含量为1%(m/V),HPMC的黏度为6 m Pa·s,HPMC的含量为7%(m/V),甘油含量为32%(m/V),得到体系的低临界溶解温度为32℃,体系的黏度为1407 m Pa·s。红外光谱测试表明CS、HPMC与甘油之间没有化学作用,流变性测试显示体系可以在36℃下凝胶化。MTT测试结果表明CS/HPMC/Gyl无毒副作用,具有良好的生物相容性。研究结果表明该体系是一种良好的可注射型温敏水凝胶。  相似文献   

16.
Sustained release thermosensitive solution containing cytarabine-loaded liposome delivery system offers the possibility of reduced dosing frequency and sustained drug action. Biodegradable and biocompatible chitosan-beta-glycerophosphate (C-GP) thermosensitive solution having the property to gel at body temperature and to maintain its physical integrity for longer period of time was used. The C-GP solution containing cytarabine-loaded liposomes (CGPCLL) was studied, and the results showed that the cytarabine liposomes were capable of high encapsulation efficiency (85.2?±?2.58%) with the mean diameter of 220?±?6.9 nm of extruded cytarabine-loaded liposome. Furthermore, transmission electron microscopy showed spherical-shaped liposomes after extrusion with smooth surface. In vitro studies of CGPCLL in PBS buffer showed that this system can sustain release of encapsulated drug for more than 60 h compared with drug-loaded liposomal suspension (upto 48 h). Pharmacokinetic studies of CGPCLL resulted in higher t1/2 (28.86 h) and AUC 2526.88 μg/mL h compared with cytarabine-loaded liposomal suspension (CLLS) and C-GP containing free cytarabine (CGPFC) in rats. CGPCLL was capable of sustaining the cytarabine release for more than 60 h in vivo compared with CLLS and CGPFC which showed maximum amount of drug release within 42 and 10 h, respectively. Thus, these results showed that the CGPCLL gels at body temperature and can sustain the delivery of cytarabine effectively.  相似文献   

17.
采用自由基胶束聚合法合成了新型的2-甲基-2-丙烯酰胺基丙磺酸钠(NaAMPS)/N-乙烯基己内酰胺(VCL)/二乙烯苯(DVB)温敏缔合共聚物(PAVD)。用红外光谱(FT-IR)、核磁共振(1H-NMR)、元素分析和凝胶渗透色谱(GPC)确定了PAVD的分子结构和重均分子量;研究了共聚物溶液的温敏增稠特性,并进一步考察了共聚物质量浓度、盐浓度等因素对其温敏增稠性能的影响。结果表明,当共聚物溶液达到一定浓度时,其具有优良的温敏增稠性,且增稠效果随共聚物质量浓度及外加盐浓度的增加而增强。抗老化实验结果表明,PAVD在80℃时具有优良的耐温抗老化性能。  相似文献   

18.
Graphene oxide (GO) is promising in the fight against pathogenic bacteria. However, the antibacterial activity of pristine GO is relatively low and concern over human cytotoxicity further limits its potential. This study demonstrates a general approach to address both issues. The developed approach synergistically combines the water shock treatment (i.e., a sudden decrease in environmental salinity) and the use of a biocompatible block copolymer (Pluronic F‐127) as a synergist co‐agent. Hypoosmotic stress induced by water shock makes gram‐negative pathogens more susceptible to GO. Pluronic forms highly stable nanoassemblies with GO (Pluronic‐GO) that can populate around bacterial envelopes favoring the interactions between GO and bacteria. The antibacterial activity of GO at a low concentration (50 μg mL?1) increases from <30% to virtually complete killing (>99%) when complemented with water shock and Pluronic (5 mg mL?1) at ≈2–2.5 h of exposure. Results suggest that the enhanced dispersion of GO and the osmotic pressure generated on bacterial envelopes by polymers together potentiate GO. Pluronic also significantly suppresses the toxicity of GO toward human fibroblast cells. Fundamentally, the results highlight the crucial role of physicochemical milieu in the antibacterial activity of GO. The demonstrated strategy has potentials for daily‐life bacterial disinfection applications, as hypotonic Pluronic‐GO mixture is both safe and effective.  相似文献   

19.
热敏高分子膜   总被引:1,自引:0,他引:1  
介绍了热敏高分子膜的概念,及其合成方法、发展趋势以及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号