首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Al-doped CaCu3Ti4− x Al x O12− x /2 (CCTO, x =0–0.1) ceramics were prepared by the solid-state reaction, and their electric and dielectric properties were investigated. Al doping has been shown to reduce the dielectric loss remarkably while maintaining a high dielectric constant. At x =0.06, the loss tangent (tan δ) was below 0.06 over the frequency range of 102–104 Hz, and the dielectric constant was 41 000 at 10 kHz. Impedance spectra indicated that Al doping increased the resistivity of the grain boundary by an order of magnitude. The improvement of the dielectric loss in Al-doped CCTO was attributed to the enhanced grain boundary resistivity.  相似文献   

2.
Sb2O5 were selected to substitute (Nb0.8Ta0.2)2O5 and the effects of Sb substitution on the dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics were studied. The perovskite Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics showed no obvious change with x value being no more than 0.08, and the pseudoperovskite unit cell parameters a = c , b and monoclinic angle β decrease with Sb concentration increasing. The dielectric properties of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics were found to be affected greatly by the substitution of Sb for Nb/Ta. The ɛ value of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics sintered at their densified temperature increased from 480 to 825 with x from 0 to 0.08, the tan δ value decreased sharply from 0.0065 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept a stable lower tan δ value ∼0.0024 with x to 0.08. The temperature coefficient of capacitance values continuously decreased from a positive value of 1450 ppm/°C for x =0 to a negative value of −38.52 ppm/°C for x =0.08.  相似文献   

3.
The effects of V substitution for Nb on the dielectric and polarization properties of Sr0.5Bi2.25Na1.25(Nb3− x V x )O12 ceramics were investigated in this study. From the X-ray powder diffraction results, no secondary phase was detected in the composition range of 0–0.075. The remanent polarizations ( P r) of the samples in the composition range of 0–0.03 were improved by the V substitution for Nb and the highest P r value of approximately 15 μC/cm2 was obtained at x =0.03; it was noted that the V substitution for Nb was effective in improving the P r values in this ceramics. On the other hand, the coercive fields ( E c) of the samples were on the order of approximately 40 kV/cm in such a composition range. Moreover, the anomalous variations in the dielectric constant were observed in the composition range of 0–0.075. Also, it was observed that the dielectric loss increased drastically at the temperature of approximately 500°C.  相似文献   

4.
Microwave dielectric properties of Ca1- x Sm2 x /3TiO3 ceramics were investigated as a function of the amount of Sm3+ substitution (0.0 ≤ x ≤ 0.8). The structure was changed from orthorhombic perovskite at x = 0.0 to tetragonal at x = 0.6. As the calcium vacancy concentration increased with increased Sm3+ substitution, the unloaded Q value (similar/congruent 1/tan delta) increased up to the solid-solution limit at x = 0.6 and then decreased because of formation of the secondary phase Sm2Ti2O7. The dielectric constant decreased with increased Sm3+ substitution. The effects of Sm3+ substitution on dielectric loss and dielectric constant of the specimens were analyzed by the infrared reflectivity spectra in the range 50–4000 cm−1, which were evaluated using the Kramers-Kronig analysis and classical oscillator model. The correlations among dielectric constant, dielectric loss, and dispersion parameters were studied.  相似文献   

5.
Lead-free (K0.44Na0.52Li0.04) (Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics were prepared by the conventional solid-state sintering method. The grain growth of the ceramics was inhibited and the relative density was improved with Ta substituting for Nb. Increasing x led to different variations of dielectric properties before and after poling, and prevented the occurrence of orthorhombic–tetragonal phase transition (at T o − t ). All the ceramics show an intermediate relaxor-like behavior between normal and ideal relaxor ferroelectrics. Significantly enhanced dielectric and piezoelectric properties were obtained in the ceramics with x =0.20. The ceramics are very promising lead-free materials for electromechanical device applications.  相似文献   

6.
The electromechanical and electric-field-induced strain properties of x Pb(Yb1/2Nb1/2)O3· y PbZrO3·(1− x − y )PbTiO3 ( x = 0.12, 0.25, 0.37; y = 0.10–0.40) ceramics have been studied systematically as a function of Pb(Yb1/2Nb1/2)O3 (PYN) content and PbZrO3/PbTiO3 (PZ/PT) ratio. In addition, the effect of MnO2 on the electromechanical properties of 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 was also investigated. The maximum transverse strain values of 1.6 × 10−3 for x = 0.12, 1.45 × 10−3 for x = 0.25, and 1.36 × 10−3 for x = 0.37 were obtained at the compositions which were regarded as the morphotropic phase boundary (MPB). The transverse strain was maximized at the MPB composition. The value of the maximum electromechanical coupling coefficient was 0.69 for y = 0.40 and x = 0.12 composition. In the 0.12Pb(Yb1/2Nb1/2)O3·0.40PbZrO3·0.48PbTiO3 composition, the temperature of the maximum dielectric constant decreased and the grain size increased with an addition of MnO2. The electromechanical coupling coefficient decreased while the mechanical quality factor rapidly increased with an addition of MnO2. These resulted mainly from the acceptor effect of manganese ions that were produced by doping MnO2 into the perovskite structure.  相似文献   

7.
Zn-substituted CaCu3Ti4O12 ceramics were synthesized by solid-state sintering. Their microstructures and dielectric properties were investigated. Ca(Cu1− x Zn x )3Ti4O12 single-phase structures were obtained up to x =0.1, and the Cu+/Cu2+ and Ti3+/Ti4+ mixed-valent structure was enhanced with increasing Zn substitution. The giant dielectric response was significantly enhanced by Zn substitution. The dielectric constant increased with increasing x , and a giant dielectric constant plateau as high as ∼9 × 104 was achieved for x =0.1 at 10 kHz, while that for x =0 was ∼3 × 104. The enhanced giant dielectric response was profoundly concerned with the modified mixed-valent structure.  相似文献   

8.
Chemically induced grain-boundary migration and its effects on the interface and dielectric properties of semiconducting SrTiO3 have been investigated. Strontium titanate specimens that had been doped with 0.2 mol% of Nb2O5 were sintered in 5H2/95N2. The sintered specimens were diffusion annealed at 1400°C in 5H2/95N2 with BaTiO3 or 0.5BaTiO3-0.5CaTiO3 (mole fraction) packing powder. The grain boundaries of the annealed specimens were oxidized in air. In the case of BaTiO3 packing, grain-boundary migration occurred with the diffusion of BaTiO3 along the grain boundary. The effective dielectric constant of the specimen decreased gradually as the temperature increased but showed two peaks, possibly because of barium enrichment at the grain boundary and an oxidized Sr(Ba)TiO3 layer. In the case of 0.5BaTiO3-0.5CaTiO3 packing, although barium and calcium were present at the grain boundary of the specimen, no boundary migration occurred, as in a previous investigation. With the diffusion of barium and calcium, the resistivity of the specimen increased and the variation of the effective dielectric constant with temperature was much reduced, in comparison to those without solute diffusion. These enhanced properties were attributed to the solute enrichment and the formation of a thin diffusional Sr(Ba,Ca)TiO3 layer at the grain boundary.  相似文献   

9.
(1 – x )(Bi0.8La0.2)(Ga0.05Fe0.95)O3· x PbTiO3 (BLGF-PT) crystalline solutions have been fabricated by solid-state reactions. BLGF-PT has single perovskite phase structure with a rhombohedral–tetragonal (FEr-FEt) morphotropic phase boundary (MPB) at a PT content of x = 0.43. Lanthanum substitution has been found to increase the insulation resistance and decrease the coercive field down to 20 kV/cm, which results in significant improvements in dielectric and piezoelectric properties of BLGF-PT. The dielectric constant, loss tangent, Curie temperature, remnant polarization, piezoelectric d 33 constant, and planar coupling factor of 1760, 0.05, 264°C, 33 μC/cm2, 295 pC/N, and 0.36, respectively, have been achieved for BLFG-PT in the vicinity of the MPB. Compared with conventional Pb(Zr,Ti)O3 (PZT) piezoelectric ceramics, the BLGF-PT is a competitive alternative piezoelectric material with decreased lead content.  相似文献   

10.
This paper examined the room-temperature mechanical properties of a mixed-conducting perovskite La1– x Sr x Co0.2Fe0.8O3 ( x = 0.2–0.8). Powders were made by the combustion synthesis technique and sintered at 1250°C in air. Sintered density, crystal phase, and grain size were characterized. Young's and shear moduli, microhardness, indentation fracture toughness, and biaxial flexure strength were determined. The Young's and shear moduli slightly increased with increasing strontium content. Young's modulus of 151–188 GPa and shear modulus of 57–75 GPa were measured. Biaxial flexure strength of ∼160 MPa was measured for lower strontium content batches. Strength greatly decreased to ∼40 MPa at higher strontium concentrations ( x = 0.6–0.8) because of the formation of extensive cracking. Indentation toughness showed a higher value (∼1.5 MPa·m1/2) for low strontium ( x = 0.2) content and a lower value (∼1.1 MPa·m1/2) for the other batches ( x = 0.4–0.8). Materials with fine and coarse grain size were also tested at various indent loads and showed no dependence of toughness on crack size. In addition, fractography was used to characterize the critical flaw and fracture mode.  相似文献   

11.
We report a dielectric constant of up to 5.4 × 105 at room temperature and 1 kHz for CaCu3Ti4O12 (CCTO) ceramics, derived from multiphase powders (coprecipitation products), made by a "chimie douce" (coprecipitation) method, and then sintered in air. The sintered products are pure-phase CCTO ceramics. The high dielectric constant is achieved by tuning the size of grains and the thickness of grain boundaries. The grain growth is controlled by varying the concentration of excess CuO in the initial powder (calcined coprecipitation products) between 1 and 3.1 wt%. The dielectric constant of pure CCTO ceramics increases with the initial CuO concentration, reaching its maximum at 2.4 wt% of CuO. A further increase of excess CuO in powders results in a permittivity decrease, accompanied by the formation of CuO as a separate phase in the sintered products. The unusual grain growth behavior is attributed to a eutectic reaction between CuO and TiO2 present in the initial powder.  相似文献   

12.
Microwave dielectric properties and far-infrared reflectivity spectra of the 0.3CaTiO3–0.7Li(1/2)−3 x Sm(1/2)+ x TiO3 ceramics were investigated as a function of Sm3+ substitution (0.0 ≤ x ≤ 0.12). The dielectric constant decreased as the Sm3+ substitution increased. The Q × f value increased, up to a solid-solution limit at x = 0.11, because of the change of vibration modes between the A-site cation and the TiO6 octahedron, and then decreased because of the formation of a secondary phase (Sm2Ti2O7). On the analysis of the far-infrared reflectivity spectra, in the 50–4000 cm−1 range, the change of the dielectric loss and dielectric constant could be explained by the intrinsic factor.  相似文献   

13.
(1− x )(Na0.5K0.5)NbO3– x LiNbO3 [(1− x )NKN– x LN] ceramics were produced by the conventional solid-state sintering method, and their microstructure and piezoelectric properties were investigated. The formation of the liquid phase and K6Li4Nb10O30 second phase that were observed in the (1− x )NKN– x LN ceramics was explained by the evaporation of Na2O during the sintering. A morphotropic phase boundary (MPB) was observed in the specimens with 0.05< x <0.08. Promising piezoelectric properties were obtained for the specimens with x =0.07. Therefore, the piezoelectric properties of this 0.93NKN–0.07LN ceramic were further investigated and were found to be influenced by their relative density and grain size. In particular, grain size considerably affected the d 33 value. Two-step sintering was conducted at different temperatures to increase the grain size. Piezoelectric properties of d 33=240 (pC/N) and k p=0.35 were obtained for the 0.93NKN–0.07LN ceramics sintered at 1030°C and subsequently annealed at 1050°C.  相似文献   

14.
Morphotropic phase boundary (MPB) compositions separating rhombohedral and tetragonal phases in the (1− x − y )Pb(Mg1/3Ta2/3)O3– y PbZrO3– x PbTiO3 (PMT–PZ–PT100 x ) ternary solid solution system were characterized using X-ray diffraction and dielectric, piezoelectric properties. This work focused on compositions with a PZ content fixed at y =0.2, with an MPB composition found to be located at x =0.4. Piezoelectric coefficients and dielectric permittivity were found to be on the order of d 33=580 pC/N and 4100, respectively. Acceptor modification using manganese was found to induce a "hardening" effect in 0.4PMT–0.2PZ–0.4PT, with decreased piezoelectric coefficients d 33 and dielectric loss and increased mechanical quality factor Q . Piezoelectric coefficients d 33, Q values, and dielectric loss were found to be 500 pC/N, 2000, and 0.4%, respectively, for 0.4PMT–0.2PZ–0.4PT with MnO2 dopant levels around 0.5 wt%. The figure of merit (product of Q and d 33) was found to be on the order of 1 × 106, significantly higher when compared with other hard piezoelectric PZT materials. Specifically, the PMT–PZ–PT materials may be attractive candidates for high-power ultrasonic applications, particularly fine-scale components that require relating high permittivities.  相似文献   

15.
Pb0.97La0.02(Zr0.87− x Sn x Ti0.13)O3 (PLZST, x =0.27, 0.17, 0.07)) thin films with the compositions in ferroelectric rhombohedral (FER) region, near the morphotropic phase boundary (MPB), were deposited on the Pt-electroded silicon (PtSi) substrates by the sol–gel process. The phase structure and surface morphology of PLZST thin films were analyzed by XRD and SEM, respectively. The dc electric field and temperature-dependent dielectric properties of the PLZST thin films were investigated in detail. The results indicated that the dielectric constant, remnant polarization, and the Curie temperature ( T c) of PLZST films were elevated with the decrease of Sn content. Hence, the larger dielectric tunability (τ) was obtained for PLZST thin films with x =0.07, and the maximum τ value was 78.1%.  相似文献   

16.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

17.
CaCu3Ti4O12 (CCTO) ceramics with high dielectric constant (2–4 × 104) and low loss (0.04) were prepared by the sol–gel process and sintered at 1050°C for different times. The sintering time has a sensitive influence on the values of the dielectric constant and nonlinear coefficient. Tailored dielectric constant and nonlinear coefficient can be obtained by selecting a suitable sintering time according to different desired device application. The result of current–voltage characteristics and Cole–Cole plots in a broad temperature range (60–400 K) provide more effective evidence of the high dielectric constant supported by the grain boundary barrier layer (GBBL) capacitors model. Below 150 K, the GBBL capacitors effect weakens and gradually disappears with further decrease of temperature, thus leading the dielectric constant to decrease rapidly. Two values of grain activation energy acting at different temperature for each sample were obtained.  相似文献   

18.
The effects of calcium substitution on the structural and microwave dielectric characteristics of [(Pb1− x Ca x )1/2La1/2](Mg1/2Nb1/2)O3 ceramics (with x = 0.01–0.5) were investigated. All the materials were observed to have an ordered A(B1/2'B1/2")O3-type perovskite structure; however, the space group of the structure changed from Fm 3 m to Pa 3 as the calcium content increased to x = 0.1, and then from Pa 3 to R 3¯ at the x = 0.5 composition. During the structural evolution, the lattice parameter of the perovskite cell decreased linearly, and the dielectric constant ( k ) also decreased, from k = 80 to k = 38. However, the product of the quality factor and the resonant frequency ( Q × f ) increased from 50 000 GHz to 90 000 GHz as the calcium content increased. Also, the temperature coefficient of resonant frequency (τƒ) gradually changed from 120 ppm/°C to −40 ppm/°C as the calcium content increased. At the x = 0.3 composition, a combination of properties— k ∼ 50, Q × f ∼ 86 000 GHz, and τƒ∼ 0 ppm/°C—can be obtained.  相似文献   

19.
When a small amount of Ba or Sr is substituted for Pb in Pb(Mg1/3 Nb2/3)O3-PbTiO3-Pb2rO 3 , the morphotropic boundary and the compositions which show the highest planar coupling coefficient and dielectric constant shift slightly toward the decreasing PbTiO3 content. The tetragonality of Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Mg1/2 Nb2/3)-O3-PbTiO3-PbZrO3 ceramics decreased with increasing Ba or Sr content. The lattice parameter (α axis) in the rhombohedral or pseudocubic phase increased with the increase of Ba but decreased with the increase of Sr substitution. Although the Curie temperature was lowered with the increase of Ba or Sr, the dielectric constants of the ceramics were increased. The dielectric and piezoelectric properties of the ternary compositions near the morphotropic boundary were improved through selection of sub-stituent and base composition. A planar coupling coefficient of 0.66 and a low Young's modulus were obtained with substitution of 5 mole % Ba. A dielectric constant greater than 3500 and a planar coupling of 0.63 can be obtained by substituting 5 mole % Sr.  相似文献   

20.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号