首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在合理的假设条件下,考虑到液膜对动环的热量分配系数,基于液体润滑非接触机械密封稳态传热模型,利用ANSYS软件分别对动环变形前后温度场进行计算,得出动环端面温度分布规律,并分析主轴转速、变形角β、液膜厚度、密封环导热系数等参数对温度场的影响。分析结果表明:变形后温度要明显高于变形前温度;动环的高温区出现在内径处;主轴转速、材料的导热系数对动环端面温度有较大影响。  相似文献   

2.
根据热平衡方程推导出高压机械密封中的温升计算公式,并建立了机械密封件温度场的有限元模型,利用ANSYS分析软件求解密封环内部各节点的温度。根据温度场分布图,对影响密封环热影响的主要因素进行了讨论。结果表明:密封端面温度最高且靠近内径方向,应通过改善散热和加强冷却防止因摩擦热使正常压力下的液膜流体达到沸点并汽化;密封介质压力、密封端面的平均直径和转速的增加都会使摩擦热增加,从而使密封端面温度升高;不同密封介质的摩擦因数和传热系数会造成不同的温升;导热率越高扩散热量也就越多,选择导热率高的密封材料能有效地降低密封环温度。  相似文献   

3.
基于Ansys的机械密封环温度场分析   总被引:6,自引:0,他引:6  
在合理的假设条件下,建立了机械密封环温度场的数学模型,利用有限元分析软件Ansys 8.0计算了特定工况下的机械密封环的温度场,得到了端面温度的分布规律及密封环内温度沿轴向的变化趋势,并讨论了几个重要参数,发现导热系数对端面温度影响显著,密封端面温度随密封介质压力和主轴转速近似呈线性变化。  相似文献   

4.
剖分式机械密封传热及耦合变形的数值研究   总被引:1,自引:0,他引:1  
胡琼 《润滑与密封》2018,43(8):24-31
为研究剖分式机械密封变形规律,建立剖分式机械密封三维传热模型,计算剖分环端面摩擦热、摩擦热分配系数及对流换热系数,研究主轴转速、冲洗量对剖分环温度场、热变形及热-力耦合变形的影响,同时分析箍紧力对剖分环热-力耦合变形的影响。研究结果表明:温度最高点位于密封端面内径侧,且碳石墨剖分静环的密封端面温度比碳化硅动环的高,密封端面和分型面在温度场作用下产生正锥度变形,而箍紧力可以减小密封端面及分型面的变形;剖分动静环的端面和分型面热变形锥度随转速的增大,均呈现增大趋势,端面的耦合变形锥度也随之增大;冲洗量增大,剖分动环端面和分型面热变形锥度减小,端面耦合变形锥度减小,剖分静环变形规律相反;箍紧力增大,剖分动环、静环端面耦合变形锥度增大。  相似文献   

5.
利用Pro/E的热力学分析对机械密封的动环进行有限元分析,通过对密封环摩擦热、搅拌热等因素的分析计算,分析密封环端面温度对密封环结构变形的影响。结果表明:内流式机械密封端面温度径向呈近似抛物线分布;密封环内的温度梯度使密封环产生热变形,导致形成圆锥型的端面;热变形会使密封环产生内应力。  相似文献   

6.
基于热力单向耦合理论,对螺旋槽机械密封摩擦副界面的热流体进行Fluent数值模拟,得到密封环的温度场分布规律;将得到的温度场作为边界条件之一导入到密封环端面中进行耦合力变形分析,并研究密封环的转速以及介质压力对动静环最大变形影响。结果表明:动静环的最高温度都出现在液膜和环的接触处,且温度由密封端面开始向两端逐渐降低;密封环的变形量相对于液膜厚度较大,其中静环的变形梯度较动环大,其更容易失效;动静环端面最大变形量随转速和介质压力的升高而增大,在选择工况条件时可适当降低转速和介质压力来减少端面变形量。  相似文献   

7.
利用ANSYS软件对双端面机械密封环温度场进行了分析,考虑双端面机械密封环两侧不同气体泄漏介质的影响,绘出了密封环温度分布云图及等温线图,并分别讨论了主轴转速、润滑油温度发生变化时对密封环端面温度场的影响。结果表明,密封环端面内径处温度最高;静环换热效果较动环差;密封环周围主要是通过润滑油的换热,而与气体换热量较小。  相似文献   

8.
液膜润滑非接触式机械密封温度场分析   总被引:1,自引:0,他引:1  
利用有限元软件ANSYS计算了液膜润滑非接触式机械密封的温度场分布,与同样工况的接触式机械密封进行了对比,并分析了密封材料导热系数、主轴转速、密封介质粘度、液膜厚度等参数对温度场的影响.结果表明:密封材料导热系数、主轴转速对端面温度具有较大影响,而液膜厚度的影响可以忽略.  相似文献   

9.
热弹变形对核主泵用流体静压型机械密封性能的影响   总被引:10,自引:2,他引:10  
针对核主泵用流体静压型机械密封在高压和高速条件下,其密封性能易受端面热弹变形影响的特点,通过建立收敛台阶端面流体静压型机械密封的稳态传热模型,并考虑流体粘度随压力、温度的变化,建立端面流体膜压力和密封环温度的控制方程,采用有限差分法求解各控制方程,采用有限元法求解密封环热、弹变形,对密封进行流、固、热耦合分析,研究热弹变形对密封性能的影响;同时改变操作参数,研究端面温度、热弹变形、端面流体膜平衡间隙等随之产生的变化规律.结果表明,端面的弹性变形大于热变形;热弹变形的综合影响使端面由外径向内径形成收敛间隙,导致开启力、泄漏率和液膜刚度增加;动环角速度越高,流体温升越大,端面热变形越明显,泄漏率越大;流体注入温度越低,温粘效应越显著;流体注入压力越高,热弹变形量越大,密封端面平衡间隙亦越大.  相似文献   

10.
以深海推进器等水下设备用机械密封为研究对象,建立机械密封环模型,考虑深海变工况下接触端面摩擦因数的差异性,采用分离法分别对机械密封动、静环端面进行热-力耦合变形分析,并对分别考虑密封环热变形、力变形、热-力耦合变形的分析结果进行比较。结果表明:接触端面摩擦因数大小与介质压力、转速、液膜厚度等因素有关,端面摩擦因数随介质压力增大而减小,随转速增大而增大,随液膜厚度增大而减小;单一力变形、热变形分析与热-力耦合变形分析结果差别较大,热-力耦合分析结果要比单一变形分析更接近实际、分析更准确;瞬态工况下,端面温度及端面接触应力峰值均出现由外向内的变化趋势,端面接触状态受端面温度分布影响明显。  相似文献   

11.
核主泵泄漏量的大小受密封间隙影响,密封间隙形状与密封压力分布、热变形紧密相关。基于流体力学和传热学的基本原理,建立核主泵机械密封流固热耦合变形分析模型;通过分析接触状态,确定动、静环的边界约束条件。利用ANSYS软件对机械密封副的端面流场、流固热耦合热变形进行模拟分析。仿真结果表明:密封环内径与转折半径间的压力近似呈线性分布,而转折处与液膜外径之间的压力呈抛物线分布;动、静环应力分呈环形分布,最大应力处于静环上端面外径处;最高温度都出现在密封环靠近内径处,且动环温度高于静环。  相似文献   

12.
油泵用机械密封摩擦副界面热-结构耦合分析   总被引:1,自引:0,他引:1  
以热-结构耦合数值计算理论为基础,同时施加温度和力载荷边界条件,对处于高速、高压等高参数极端工况热油泵用波纹管机械密封装置摩擦副界面进行了热-结构耦合数值建模与计算分析。研究了密封环摩擦副界面的温度场特点及温度、热应力分布规律,分析了密封环在温度载荷和力载荷耦合作用下密封环的变形情况。结果表明:最高温度产生在摩擦副内径处,最大热变形在摩擦副外径处;动静环配对材料的导热系数越大,产生的最高温度就越小;在摩擦副的外径侧产生的变形有利于形成收敛型间隙。  相似文献   

13.
基于已设计的变工况机械密封为研究对象,建立机械密封二维轴对称模型,采用有限元的方法对变工况下接触式机械密封的动环、静止环进行热力耦合计算,分析密封环端面温度以及密封环端面轴向变形随介质压力和转速的变化规律,并进行试验验证结构设计合理性.结果表明:密封环端面的温度和最大温差,随着介质压力和转速的增大而增大;该结构的密封在...  相似文献   

14.
以外圆弧槽机械密封为研究对象,针对工况参数、密封环端面槽区的尺寸参数对密封环端面温度、变形的耦合影响,建立三维热-结构分析模型,分析密封环在热-力耦合作用下,工况参数、端面槽区的尺寸参数对密封环端面温度、变形的影响,并以端面温度、等效应力最小为准则,利用多目标驱动优化得到优化的槽区尺寸参数。结果表明:在密封面上开槽后,起到局部冷却作用,使端面温度沿径向非线性分布,其中在2个端面槽区中间最大,在槽区和密封端面靠外径边缘温度较低;端面上2个槽区的中间靠外径侧变形最大,轴向变形靠近内径最大。  相似文献   

15.
针对磷酸厂渣浆泵机械密封因端面变形而导致的使用寿命缩短问题,以渣浆泵背对背型双端面机械密封密封环为研究对象,采用整体法,根据实际工况建立密封环热力耦合三维计算模型,研究密封环温度场分布及端面变形情况,分析不同工况下密封环热力变形对机械密封正常工作的影响.结果表明:密封环最高温度出现在静环内侧,且温度沿径向朝静环外侧逐渐...  相似文献   

16.
针对在深海湖泊等复杂极端工况下船舶艉轴由于密封端面变形产生过大间隙,导致泄漏的问题,通过建立船舶艉轴热-力耦合分析模型,分析不同工况下,3组典型密封端面材料组对(YNW8-M106D、SiC-M106D、S30408-M106D)的密封环端面温度、应力及变形变化规律;分析海水环境下材料、转速及弹簧比压等主要影响因素及密封端面变形的影响及影响程度和权重。结果表明:转速升高100%,使得密封端面温度、应力及变形增加35%,43%及49%,弹簧比压升高100%,使得密封端面温度、应力及变形增加17%,5%及14%,应限制其最大值,防止密封失效;材料的热膨胀系数及导热系数对密封端面的影响最大,合理选取动静环材料有利于减少端面变形;选取出适合转速400 r/min、弹簧比压0.2工况下的最优材料(Si C-M106D)配对,使得船舶艉轴平衡可靠并长寿命运转。本文的模型和计算方法可为船舶艉轴密封结构的设计提供参考。  相似文献   

17.
基于ANSYS的大型艉轴机械密封环温度场理论研究   总被引:2,自引:0,他引:2  
船舶艉轴机械密封的摩擦副工作时,会产生大量的热量,引起密封端面温度升高,导致密封面不能正常运行。利用有限元分析软件ANSYS11.0计算不同工况下某大型艉轴机械密封环的温度场,得到密封端面温度的变化规律,并讨论影响温度场的几个重要参数,发现艉轴转速及密封介质压力对端面温度影响明显,密封端面温度靠近内径处温度最高,沿径向及轴向逐渐降低。  相似文献   

18.
水泵用镶嵌式密封环在工作时,密封端面会产生大量的摩擦热,引起机械密封端面的温度升高,并产生热应力,同时镶嵌式结构也会对应力有所影响,过大的热应力会引起热裂纹,造成泄漏,致使密封环不能正常工作。利用有限元软件,将密封环和底座作为一个整体,建立了三维立体模型,计算了某S型水泵用博格曼M7N机械密封的温度场、应力场,获得密封环温度和应力的变化规律,发现最高温度在内径处,而且温度沿半径方向逐渐降低,最大的温度梯度出现于外径附近,存在较大的热应力,密封端面的温度在工作开始时迅速升高,并于10 s左右达到平衡温度,并探究了工况条件对端面温升的影响规律。  相似文献   

19.
机械密封温度场传统分析方法不考虑初始力变形对温度场影响,假设认为密封端面平行,计算得到密封环温度与实际温度存在较大的偏差。建立考虑初始力变形的艉轴密封装置的有限元模型,运用ANSYS分析软件通过间接耦合法研究特定工况下船舶艉轴机械密封端面温度的分布规律及密封环内温度沿轴向的变化规律,并与传统方法结果进行比较。结果表明:提出的数值分析方法考虑了初始力变形的作用,得到的密封端面径向最高温度发生在靠近端面变形后实际接触的内径位置,而不是传统方法的靠近内径处;相比传统方法,提出的数值分析方法计算得到的端面比压更大,端面温度更高,尤其是在高温高压的工况以及采用弹性模量较小的密封材料时。  相似文献   

20.
在采用螺旋桨推进的船舶中,为防止海水沿螺旋桨流入船内,在艉轴管中设置了密封。由于其工作于恶劣的深水环境中,因此选用可靠的艉轴密封环材料对船舶运行至关重要。本文根据不同船舶艉轴密封环材料对密封性能的影响,利用有限元软件建立热-固耦合数值分析模型,计算得到了不同材料密封环的温度场、变形场、应力场,分析了弹性模量、热膨胀系数、导热系数等材料参数对密封环变形、温升、摩擦磨损及泄漏量的影响,最终选取了最优的船舶艉轴机械密封动环材料。结果表明:SiC动环材料的密封环组合端面温升最小,S30408动环材料的端面变形最大,密封端面的热变形大于力变形,热膨胀系数对密封性能影响最大,综合考虑温升和材料参数对密封环变形和密封性能的影响,选择最优的动环材料为Cr2O3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号