首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了将矩形橡胶密封圈应用于叶片式液压摆动油缸的旋转密封,利用大型有限元软件ABAQUS,求解矩形密封圈在配合挡圈使用前后,不同介质压力和预压缩量下应力与接触面压力分布情况;探讨相应的接触压力与介质压力、预压缩量的关系;并利用MATLAB绘制了分析结果曲线图。结果表明:矩形密封圈的最大范·米塞斯应力随预压缩量和介质压力的增长呈线性增长,随密封间隙的增加呈指数增长;矩形密封圈配合挡圈使用既能保证密封能力,又可以明显优化其内部的应力分布情况,防止密封挤出,延长密封圈的使用寿命。  相似文献   

2.
叶片式液压摆动油缸正常运行的关键之一在于端面密封的密封可靠性。对叶片式液压摆动油缸端面密封在静密封条件下进行数学建模,通过对该模型求解得出端面密封与转子、定子之间的接触压力,同时运用有限元软件对端面密封与转子、定子的接触压力进行仿真求解。在预压缩量0~0.5 mm,油压0~20 MPa范围内,接触压力的解析解和有限元分析结果相近,同时样机实验结果也验证了在单侧预压缩量为0和0.1 mm,油压在0~20 MPa范围时模型的正确性,这表明所建立的端面密封模型可用于判断端面密封在静密封条件下的密封可靠性。  相似文献   

3.
为了保证过滤器滤芯O形圈密封的可靠性,通过ANSYS软件创建了密封圈的二维轴对称几何模型,仿真分析了O形圈在不同的介质压力和预压缩率作用下的受力及变形情况。计算表明:O形圈在滤芯支撑环和过滤器壳体间隙处应力集中最显著,表明此处易发生O形圈的密封失效;随着预压缩率的增加,密封圈的等效应力逐渐增大;随着预压缩率和介质压力的增加,O形密封圈的接触压力不断变大,介质压力始终小于接触压力,滤芯O形圈密封有效。  相似文献   

4.
为研究盾构机主驱动密封圈压缩量以及正反面润滑油脂载荷对密封圈密封性能的影响,通过ANSYS有限元软件研究在不同压缩量和密封圈不同正反面加载压力下,丁腈橡胶(NBR)材料的VD形密封圈的密封性能。结果表明:在压缩量3~7 mm区间,随着压缩量的增加,密封圈接触面的最大von Mises应力先不断增加后逐渐趋于稳定,而最大接触压力不断下降;当压差保持一致时,随着密封圈正反面的压力升高,该VD形密封圈接触面最大压力也保持相近幅值的上升;当密封圈正反面压力变化时,该密封圈结构保证了接触压力的裕度,从而保证了密封结构密封效果的稳定性。通过曲面响应法,对设计的一种带反面支撑结构的VD形密封圈进行优化,得出在压缩量7 mm,密封圈正反面压力0.9-0.6 MPa时,其密封效果最好时出现在支撑角度为9.345 3°,支撑长度为59.499 mm时,优化后VD形密封圈最大接触压力提高了16%~25%。  相似文献   

5.
为改善双Y形密封圈在井底高温、高压工况下的密封性能,建立双Y形密封圈的二维轴对称模型,采用有限元分析软件ANSYS分析初始压缩量、润滑油压力以及润滑油与泥浆压差对双Y形密封圈密封面处接触压力的影响。结果表明:密封面处的最大接触压力随着润滑油压力的增加而增加,在不同润滑油压力下,最大接触压力始终大于润滑油压力,能够形成良好密封;随着初始压缩量的增加,最大接触压力逐渐减小,因此在保证形成良好密封的前提下,适当减小初始压缩量可以提高密封性能;随着压差的增加,最大接触应力先增加后减小最后趋于平缓。基于响应曲面法,以获得接触面最大接触压力为优化目标,对双Y形密封圈进行优化设计,得到其最佳优化组合方案。  相似文献   

6.
液压式配气系统O型密封圈动密封特性分析   总被引:3,自引:0,他引:3  
利用ABAQUS软件建立活塞运动速度为4 m/s、介质压力为6 MPa、摩擦因数为0.3的液压式配气系统O型密封圈有限元分析模型,分析不同往复运动速度、预压缩率、介质压力对液压式配气系统O型密封圈动密封特性的影响。结果表明:O型密封圈密封面的接触压力随位移的变化而产生波动,接触压力随介质压力、预压缩率的增大呈线性增大,运动速度对接触压力影响不大,接触压力曲线波动幅度随运动速度、介质压力、预压缩率的增大而增大;O型密封圈与油缸之间接触面的动密封性能优于O型密封圈与活塞之间接触面;O型密封圈在推程时的动密封性能优于回程;预压缩率小于10%时,O型密封圈不能满足该液压式配气系统的动密封要求,要确保O型密封圈的密封性,需要选择合理的预压缩率。  相似文献   

7.
针对水液压提升阀中的锥面密封问题,利用Abaqus有限元分析软件建立了锥面密封结构的二维轴对称模型,对其进行密封性能分析。分析了不同预压缩率、不同密封压力作用对O形密封圈所受最大接触压力、最大Mises应力的影响,确定了密封圈的易失效位置以及接触面的压力分布规律。结果表明:随着压缩率及密封圈所受液体压力的增大,密封圈所受到的最大Mises应力及接触面最大接触压力随之增大;带圆倒角的密封槽口或减小密封间隙,能有效减小密封圈挤出时密封槽口对密封圈的剪切应力,从而提高密封圈使用寿命,为水液压提升阀等液压元件的锥面密封结构设计提供设计依据。  相似文献   

8.
预压缩量对叶片密封可靠性的影响   总被引:1,自引:0,他引:1  
建立矩形截面叶片密封的接触压力数值模型,研究预压缩量对密封面接触压力的影响。分析结果表明,叶片密封的密封面接触压力随预压缩量的增加而增大,但不同方向的预压缩量对接触压力的增大效果并不相同。在本研究条件下,y向预压缩量导致的最大接触压力增长梯度明显大于z向预压缩量导致的最大接触压力增长梯度,要提密封面的接触压力,增大y向预压缩量效果更为明显。  相似文献   

9.
为优化汽车轮毂轴承唇形密封圈的结构,在ANSYS有限元分析软件中建立其有限元模型,研究轴向过盈量、弹簧以及侧唇倒角对唇形密封圈密封性能的影响。研究结果表明:轴向过盈量对唇形密封圈的密封性能影响较大,当轴向过盈量小于0.5 mm时,随着轴向过盈量的增大,唇形密封圈的密封性能变好,当轴向过盈量大于0.5 mm时,随着轴向过盈量的增大,唇形密封圈的密封性能变差;与带弹簧的密封圈相比,不带弹簧的密封圈的最大等效应力、应变和接触压力的出现位置发生改变,且其最大值皆小于带弹簧密封圈的,因此带弹簧唇形密封圈的密封性能更好;与上侧唇倒角相比,下侧唇倒角对密封圈等效应力分布的影响更大,对密封性能的影响更加明显。  相似文献   

10.
利用ABAQUS软件建立水下采油树堵塞器用金属锥形密封轴对称模型,分析预紧状态时轴向位移和工作状态时介质压力对密封圈的Von Mises应力及密封面接触压力的影响,并确定能够实现初始预紧密封的轴向位移范围.结果表明:在塑性失效设计准则范围内,预紧状态时,随着轴向位移的增加,密封圈的Von Mises应力增加,密封面最大接触压力先显著增大后缓慢减少;工作状态时,随着介质压力的增加,密封件Von Mises应力增加,密封面最大接触压力基本不变,而密封接触面积逐渐增大,有利于密封的实现.  相似文献   

11.
为解决给水泵油封装置中O形圈因密封失效而引起泄漏的问题,利用有限元法对密封圈的大变形、超弹性进行非线性接触分析。首先建立密封圈与转动环沟槽之间的轴对称模型,分析O形圈在不同压缩率、不同轴向压力下的应力分布规律,进而对油封装置结构改进,最后利用试验台位测试油封的密封性能。结果表明: O形密封圈压缩率越大主接触面峰值应力越大,侧接触面应力基本不变;密封圈轴向压力的增加,接触应力也急剧上升,侧面接触应变较大,但工况内无胶料“挤出”发生;改进后双密封O形圈动环结构密封可靠性、安全性更高,在不同工况下进行密封性能试验,油封装置无泄漏,为油封密封圈选型以及避免给水泵实际运行中出现“滴、漏”现象具有一定的指导意义。  相似文献   

12.
针对双浮动密封橡胶O形圈接触过程应力的变化,建立双浮动密封二维轴对称非线性接触模型;利用有限元方法对O形圈进行应力计算,分析O形圈在不同压缩率、不同浮封座和浮动环的斜面角度及不同摩擦因数下的应力变化情况。结果表明:橡胶O形圈各应力最大值随压缩率的增加呈线性增大, O形圈内高应力分布区域随压缩率的增加而增大,并由接触部位附近向其中间位置扩散;摩擦因数对O形圈各应力影响很小,而浮封座和浮动环的斜面角度对O形圈等效应力和接触压力影响较大;随着浮封座斜面角的增加,等效应力总体趋于减小,接触压力先减小后缓慢增加,而剪切应力整体变化较小;随着浮动环斜面角的增加,等效应力、接触压力呈递增趋势,剪切应力曲线上下波动,但整体变化不明显。确定双浮动密封浮封座和浮动环斜面角度最优值,为双浮动密封结构设计提供了指导。  相似文献   

13.
以典型工况下盾构机主驱动单唇形密封圈为研究对象,利用单轴拉伸试验得到密封圈丁腈橡胶材料的应力-应变曲线,确定Yeoh三阶模型的材料参数;建立单唇形密封圈的二维轴对称有限元模型,研究介质压力、压差、摩擦因数和温度对其密封性能的影响规律。研究表明:介质压力主要影响最大接触应力,随着介质压力的增加,最大接触应力呈线性增加;介质压差主要影响最大接触应力和接触长度,随着介质压差的增加,最大接触应力先线性增加然后基本保持不变,而接触长度呈非线性增加;温度变化对密封性能的影响可以忽略;在考虑的工况条件下,单唇形密封圈唇口与旋转轴接触处产生的最大接触应力始终大于介质压力,密封性能良好。  相似文献   

14.
全回转推进器桨毂动密封采用O形密封,其实际间隙的改变直接导致压缩率变化,从而对密封性能产生影响。从设计角度和工作角度对桨毂密封端面的实际间隙进行分析,研究服役过程中的装配误差、实际工况和摩擦磨损导致的间隙变化规律以及相互耦合。基于该实际间隙,在ABAQUS软件中建立桨毂动密封有限元模型,分析不同压缩率和介质压力下动密封的密封性能,如Mises应力、润滑脂油膜厚度和压力等,揭示了不同间隙下桨毂动密封性能的变化规律。结果表明:随着压缩率增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体侧壁渐渐向主接触区过渡;随着介质压力增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体底部逐渐向法兰低压接触区过渡;最大油膜压力始终大于油压值,动密封不会发生失效;通过适当增加装配间隙和介质压力有利于密封圈在自密封作用下获得更好的密封性能。  相似文献   

15.
利用ANSYS Workbench软件建立了一个航空液压作动器O形圈静密封数值仿真模型,研究了O形圈在不同压合量、油液压力、温度等条件下的接触压力分布和Mises应力分布,以此得到压合量、油液压力、温度等因素对O形圈静密封性能和使用寿命的影响。结果表明:随压合量、油液压力的增大或者温度的升高,O形圈的最大接触压力和最大Mises应力都增大,密封性能良好但是使用寿命下降。计算了各压合量和油液压力下O形圈的有效密封宽度,并利用有效密封宽度来评价O形圈静密封的可靠性。  相似文献   

16.
利用ABAQUS软件的Map Solution(MS)功能对2K型斯特封进行有限元仿真分析,该功能通过重启动分析和网格重构技术,解决了由网格畸变引起计算中断的问题,得到超高压工况下的收敛解。根据流体压力14、28、35、42、56 MPa下斯特封内、外行程的应力应变云图和密封面接触压力分布曲线,研究流体压力对密封件主应力、主应变和接触压力分布的影响规律;同时对比未使用MS功能的高压工况(35 MPa)下仿真结果,验证了MS功能分析网格大变形问题的可靠性。结果表明:在超高压工况下,斯特封的最大主应力集中分布于空气侧PTFE阶梯形环与活塞沟槽、缸筒的接触区域,最大主应变出现在PTFE阶梯形密封环的卸荷角处;随着油液压力的增加,接触压力分布曲线趋势发生明显变化,空气侧的接触压力梯度减小;在相同流体压力下,外行程时密封面接触宽度大于内行程的接触宽度。  相似文献   

17.
为研究浮动油封O形圈初始安装变形的影响,基于Ansys Workbench平台建立浮动油封的二维轴对称有限元模型,并考虑O形圈初始安装变形进行非线性接触分析,研究不同油压、安装间隙、硬度对于O形圈的应力、接触压力、接触摩擦力以及浮封环端面支反力的影响。结果表明:考虑安装过程的情况下,O形圈并不是位于浮动油封中相对居中的位置,而是在浮动油封中部偏上位置,且O形圈的最大von Mises应力相比不考虑O形圈安装过程时更大,因此考虑O形圈安装过程更符合实际情况;油压升高造成最大von Mises区域变小变窄会加大裂纹失效的风险;最大接触摩擦力集中于浮封环端面处,且接触长度随油压增大不断增加;浮封环端盖y方向作用力的增速远超x方向作用力的增速;在恒定油压的情况下,应力随安装间隙的减小而增大,应力随硬度的增加而增大;浮动油封在2 MPa油压范围内,最大接触压力均大于油压,能保证浮动油封的自密封性。  相似文献   

18.
航空发动机石墨圆周密封接触特性分析   总被引:1,自引:0,他引:1  
基于结构受力分析,利用ANSYS分析某型在役航空发动机石墨圆周密封的接触特性,研究不同工况参数对密封环最高温度、最大变形、最大应力及接触压力作用规律。结果表明:石墨圆周密封环主密封面应力分布比较均匀,密封环接头处应力最大,这与应用时接头处磨损较重的实际情况相符;辅助密封面和密封跑道应力分布均匀,密封座端面应力沿径向呈梯度分布,最大应力位于密封座靠近密封跑道边缘处;随滑动速度的增大,密封环主密封面最高温度增大,而最大变形、最大应力和接触压力表现为先减小后增大;石墨密封环主密封面最高温度、最大变形、最大应力和接触压力随密封压差增大而增大。  相似文献   

19.
为了研究O形圈的应力松弛规律及其在应力松弛条件下的密封性能,通过O形圈应力松弛试验,得到其轴向载荷衰减规律,将这些载荷值导入ANSYS中计算出O形圈的接触压力,并利用逾渗理论计算出O形圈密封面的泄漏率。研究结果表明:应力松弛条件下,O形圈上的轴向载荷随时间缓慢下降,初始压力越大轴向载荷衰减得越快,总体来看O形圈上的轴向载荷随时间遵循F_z=Aexp(-t/B)+C的衰减规律;施加的载荷越大O形圈与其接触面各点的接触压力越大,且不同载荷下O形圈与其接触面各点的接触压力均大于介质压力;应力松弛条件下O形圈密封面的泄漏率极小。试验、仿真计算及理论分析均表明,O形圈在应力松弛条件下具有良好的密封性能,证明了O形圈作为静密封的可靠性。  相似文献   

20.
为分析长期贮存条件下涡轮泵端面密封变形问题,采用有限元分析软件对涡轮泵端面密封静环组件过盈配合过程中的变形及长期贮存中的蠕变变形进行了分析计算;使用应变率硬化材料模型描述蠕变特性,得到了不同年限下密封组件应力应变和石墨环变形结果;利用广义强度应力模型方法对端面密封静环组件可靠性进行了评估;基于性能可靠性退化理论,利用有限元仿真数据对端面密封静环组件贮存可靠性变化规律进行了研究,得到了不同贮存年限下密封组件的可靠度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号