首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
含瓦斯煤热流固耦合渗流实验研究   总被引:5,自引:1,他引:4       下载免费PDF全文
以晋城煤业集团赵庄矿3号煤层的无烟煤为研究对象,运用自主研发的“含瓦斯煤热流固耦合三轴伺服渗流实验装置”,进行了恒定瓦斯压力和围压条件下含瓦斯煤热流固耦合全应力-应变瓦斯渗流实验。研究结果表明:随着煤样温度的升高,煤样的三轴抗压强度降低,承受变形的能力减小,弹性模量增大;在全应力-应变整个过程中,煤样的渗透率总体呈下降趋势;煤样渗透率小不利于采煤之前的瓦斯抽放,导致煤层深处与工作面之间的瓦斯压力梯度较大,并且高温煤样在屈服阶段的渗透率增长更快,使煤与瓦斯突出的危险性增大。煤体渗透率与应力之间的关系不是单调的随应力的增大而减小,而是要看煤体处于何种应力-应变状态。  相似文献   

2.
蔡璐  宋译 《中州煤炭》2015,(2):4-7,12
煤层渗透性是瓦斯流动理论重要的研究内容,含瓦斯煤渗透率是反映瓦斯气体于煤层中渗流难易程度的重要指标,是标志着煤层中瓦斯抽采抽放难易程度的关键参数,同时也是煤层瓦斯多场耦合的重要物性参数。以新安矿块状软煤煤样为研究对象,搭建了单轴煤层渗透性试验平台,对煤块渗透特性的固气耦合进行试验研究,旨在探索耦合作用下瓦斯气体的流动和煤岩体的固气耦合特性,以确保高瓦斯煤矿在服务年限内的正常使用。实验结果表明,煤体渗透率与垂直煤体裂隙节理面的轴压和进气压力呈反比关系,而与煤样的体积呈正比关系。  相似文献   

3.
水力增透技术在瓦斯抽采中的作用效果常常受到水的影响,为更客观地了解煤层不同含水状态下的瓦斯渗透特性,利用三轴渗流试验机,在恒定有效轴向应力和有效围压条件下,对四川省白皎煤矿试样,进行干燥煤样、自然含水煤样、液态水润湿煤样、压力水注水煤样等不同湿润方式煤样的渗流试验。试验结果表明:1)压力水注水煤样(含裂隙)的无因次渗透率随瓦斯压力的增大而逐渐减小,干燥煤样、自然含水煤样、液态水湿润煤样及压力水注水煤样的无因次渗透率均随瓦斯压力的增大呈现先减小后增大趋势,且在瓦斯压力为1.00 MPa左右时存在相对较为明显的变化拐点。2)在干燥煤样、自然含水煤样及液态水湿润煤样的含水率范围内,煤样渗透率与含水率呈线性减小关系。3)在试验范围内,随着含水率的增加,水分对瓦斯压力敏感性的影响越显著,而对压力水注水煤样,水压主要通过产生裂隙来影响煤样瓦斯压力敏感性。  相似文献   

4.
为了研究采动影响下不同含水率的含瓦斯煤渗流特性,以型煤为研究对象,采用自主研制的三轴瓦斯渗流试验装置进行了不同轴向加载速率、不同含水率的三轴含瓦斯煤渗流试验。研究结果表明:在固定瓦斯压力、固定围压卸载速率的加载条件下,增大轴向加载速率,煤样渗流速率、煤样渗透率呈非线性增大趋势;增加相同轴向加载速率情况下,低含水率下煤样的渗透率和渗流速率随着含水率的增大,其上升幅度较大;相同含水率条件下,加载速率的增大幅度越大,渗透率和渗流速率的增大幅度也越大;同时含水率与渗透率呈现二次多项式关系,且轴向加载速率越大,拟合度越高;故增加煤层含水率进而可以降低煤与瓦斯突出危险性。  相似文献   

5.
利用KDZS-Ⅱ型煤体瓦斯瞬时解吸及渗流特性测试仪在0.31、0.61 MPa气体压力条件下,开展了新景矿3号煤层渗透率对有效应力敏感性实验分析。结果表明:新景矿3号煤层渗透率对有效应力具有极强的敏感性,煤层渗透率随有效应力增加而降低,二者之间具有良好的负指数幂函数关系;相同气体压力和有效应力下各煤样试件的渗透率变化不同且分异现象显著;煤样试件的渗透率大小与孔隙度、裂隙方向密切相关,煤样试件裂隙方向平行于轴线方向、孔隙度大时,煤样试件的渗透率相对较大;煤样试件的裂隙方向垂直于轴线方向、孔隙度较小时,煤样试件的渗透率相对较小。  相似文献   

6.
祝捷  唐俊  王琪  王全启  张博  张犇 《煤炭学报》2019,44(6):1764-1770
与气体压力有关的煤层渗透率变化规律是煤矿开采和煤层气开发过程中的重要问题,不同应力条件下,不同类型煤样的渗透率演化特征不同。为了研究瓦斯压力变化过程中煤样渗透性的变化规律,以开滦赵各庄煤矿9号煤层的煤样为研究对象,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,在恒定温度、轴压和围压,降低瓦斯压力的实验条件下测定了煤样应变和瓦斯渗透率。实验结果表明:随着瓦斯压力的降低,煤样收缩应变加剧,渗透率表现为两种变化趋势:逐渐增大和先减小后增大(渗透率回升对应的瓦斯压力小于1. 0 MPa)。瓦斯压力降低至0. 3 MPa时,渗透率为初始条件下(瓦斯压力2. 0 MPa)渗透率的1. 9~2. 9倍。考虑到煤样在径向和轴向的收缩应变数值接近,针对三维变形煤样建立了渗透率模型,模型同时体现了气体压力和气体解吸对渗透率的影响。理论分析表明,降压过程中煤的渗透率将在某一气体压力(反弹气体压力pr)时由降低转为升高。推导的反弹气体压力pr计算公式显示pr的取值由煤样的体积模量K、与吸附效应有关的Langmuir系数εp和pL共同决定;体积模量K与吸附变形系数εp越大,pr越大。值得注意的是,pr的取值与煤样的外部应力以及内部的气体压力无关。结合本文和前人的实验数据,由本文的渗透率模型计算得到了不同应力和瓦斯压力条件下的煤样渗透率变化曲线以及相应的反弹气体压力pr。模型计算结果与实验数据接近,最大相对误差低于8. 9%。研究表明,实验测得煤样的渗透率表现为何种变化趋势,取决于反弹气体压力pr和实验气体压力的关系。当pr≥pmax(实验测点中最大的气体压力值)时,渗透率随着气体压力增大而降低;当pr≤pmin(实验测点中最小的气体压力值)时,渗透率随着气体压力增大而增大;当pminprpmax时,随瓦斯压力的增大,煤样渗透率呈"V"形变化,即先减小后增大。  相似文献   

7.
《煤矿安全》2017,(1):1-4
以突出煤样制备的型煤为研究对象,利用自主研发的含瓦斯煤受载破坏试验系统,开展了不同加载速率及恒压差条件下的突出型煤瓦斯渗流的试验研究。结果表明:在围压和瓦斯压力固定的条件下,加载速率影响突出煤样的渗流特征,确定50 N/s的加载速率作为研究不同恒压差条件下突出煤渗流特征的实验加载速率;在围压与瓦斯压力差一定的前提下,随着围压、瓦斯压力的协同增大,突出煤样的瓦斯渗流速度表现出先减小后增大的趋势,而渗流速度的最大值与最小值的差值则呈先增大后减小的趋势,在围压1.5 MPa、瓦斯压力0.75 MPa时达到最大值。  相似文献   

8.
载荷作用下煤体变形与渗透性的相关性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
祝捷  姜耀东  孟磊  赵毅鑫 《煤炭学报》2012,37(6):984-988
利用含瓦斯煤热流固耦合三轴伺服渗流装置,进行了不同气体压力作用下煤样全应力应变过程的瓦斯渗流实验。实验结果显示,煤样渗透率与变形之间存在内在关联,渗透率变化呈现阶段性特点。基于考虑气体吸附性的含瓦斯煤有效应力,建立了加载煤样变形与渗透率的相关性模型,研究受荷煤样变形与瓦斯渗流的相互关系。理论分析表明:当应力控制边界条件时,渗透率与煤样变形密切相关;煤样渗透率的变化受到有效应力、煤样变形模量、孔隙率和气体吸附性的共同作用;有效应力系数是联系煤样变形和渗透率的关键参量。由于理论计算结果与实验曲线较为接近,因此模型反映了不同瓦斯压力下加载煤样变形与渗透率变化的基本特征。  相似文献   

9.
针对不同瓦斯压力作用下煤岩渗透率的差异性,利用自行研制改造的含瓦斯煤热流固耦合三轴渗流实验装置,对构造煤及硬煤两种煤样进行了不同轴压围压条件下瓦斯压力对渗流特性的试验研究。结果表明,煤样渗透率随瓦斯压力变化出现明显的Klinkenberg效应,软煤样与硬煤样的渗透率变化均符合二次多项式函数。不同围压下,两种煤样渗透率随瓦斯压力变化差异性较大,且Klinkenberg效应拐点也不一致,其主要受煤样吸附常数影响。煤样渗透率出现先减小后增大趋势的主要原因为:Klinkenberg效应与围压及轴压作用下瓦斯吸附致使煤基质膨胀从而使煤样渗透率减小,后来孔隙压力增大导致渗透率增加。研究结果为提高煤层气抽采率提供理论参考依据。  相似文献   

10.
为分析煤层气地面预抽效果影响规律,采用Comsol数值模拟软件,对在不同工况的地应力和储层压力条件下煤层气地面预抽进行数值模拟研究,结果表明:随着煤层中地应力增大,煤层基质孔隙率下降、裂隙趋于闭合,致使煤层渗透率降低,减小了气体在孔隙和裂隙中的渗流速率,最终导致瓦斯产出速率和产气量的下降;储层压力与煤层气产出速率呈正相关关系,储层压力越大,瓦斯产出率越高同时累计产气量也越高;随着瓦斯抽采时间增加,煤层渗透率逐渐增大,且储层压力越大煤层渗透率变化越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号