首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于耦合了密封圈的弹性变形、流体动力分析和过盈接触的密封性能数值计算流程,利用Matlab 软件编程实现矩形动密封特性的数值计算,得到矩形密封圈的油膜厚度、泄漏量及摩擦力等密封性能参数,分析表面粗糙度对矩形密封圈的润滑状态和泄漏量的影响。结果表明:往复运动速度一定时,随着密封圈粗糙度的增加,密封偶合面的润滑状态由流体润滑转变为润滑润滑状态,密封的泄漏量也呈几何式增加,说明粗糙度对密封圈的工作寿命和密封性能有较大的影响;往复运动速度也是影响矩形密封圈密封性能的关键工作参数之一,密封压力一定时,随着粗糙度的增加,不发生泄漏的临界速度降低。  相似文献   

2.
为了探究不同结构及运行参数对双唇Y形密封性能的影响以及最优动态密封参数组合,利用ABAQUS有限元分析软件模拟分析双唇Y形拉杆密封在静压状态下的密封性能,通过改变第二内唇的左右倾角、轴向位置和过盈量,研究参数变化对双唇Y形拉杆密封性能的影响。分析动态密封下工作压力、活塞杆运行速度和密封件粗糙度对双唇Y形圈的摩擦力矩、泄漏量的影响。并利用田口试验设计方法对密封圈参数进行优化,确定参数的最佳水平。结果表明:随着第二内唇过盈量增大,两个唇最大接触压力均随之增大,而轴向位置对第二内唇最大接触压力影响不明显;当第二内唇左倾角大于25°、右倾角大于30°后最大接触压力波动显著增加;密封圈与活塞杆间的摩擦力随着密封件粗糙度、密封压力的增加而变大,而往复速度对摩擦力影响不大;当粗糙度大于0.95 μm时密封出现外泄漏,密封压力的增加使密封圈的净泄漏量逐渐减小。研究的双唇往复密封最佳动态密封参数组合为工作压力8 MPa、粗糙度0.9 μm、活塞杆运行速度10 mm/s。该研究结果可为具有微小扭转或弯曲变形工况下的液压缸拉杆密封设计提供参考。  相似文献   

3.
为研究往复运动密封性能,采用MatLab数值方法建立一种混合润滑模型,该模型包含弹性力学、流体力学和接触力学分析。基于混合润滑模型,研究粗糙度和往复速度对动态往复密封摩擦力、泄漏量和油膜厚度等密封性能的影响规律,揭示液压往复密封机制。结果表明:往复运动密封圈处于混合润滑状态,接触区不仅有流体压力,还包含粗糙度接触压力;存在临界粗糙度σ_c和临界速度u_c,当粗糙度σσ_c时,随粗糙度的增大内行程的泄漏表现为越来越小的内泄漏,当σ≥σ_c时,随粗糙度的增大内行程的泄漏表现为越来越大的外泄漏;当速度uu_c时,净泄漏量随速度的增大表现为越来越小的外泄漏,当u≥u_c时,净泄漏量随速度的增大表现为越来越大的内泄漏;随着粗糙度的增加,膜厚与内行程的摩擦力增大,而外行程的摩擦力无明显变化;随着速度的增加,油膜厚度增加,内行程摩擦力减小,而外行程摩擦力变化很小。  相似文献   

4.
建立双唇Y形拉杆封的混合润滑模型,并进行流体力学、接触力学、变形力学分析。利用MatLab软件实现对模型的求解,得到密封区域的流量、膜厚和接触压力分布,并分析不同密封件粗糙度对轴向往复双唇Y形密封圈的摩擦力矩、泄漏量的影响。结果表明:在双唇Y形往复密封中,两唇在密封过程中均处于混合润滑状态,且第一内唇处的膜厚大于第二内唇处;第二内唇静态接触压力近似于对称分布,且第二内唇最大接触压力大于第一内唇最大接触压力,表明第二内唇作为密封的第二道防线可以保证良好的密封效果;密封件粗糙度是影响矩形密封性能的重要因素,随表面粗糙度的增加,直线往复密封的摩擦力和泄漏量增大,存在一个临界粗糙度使泄漏方向改变。  相似文献   

5.
采用数值计算方法,建立了基于平均流动因子的往复密封混合润滑模型。分析了阶梯形组合密封圈表面粗糙度对其往复密封摩擦力、泄漏量和油膜厚度的影响规律。结果表明:内行程摩擦力随粗糙度的增大而增大,而外行程摩擦力无明显变化。存在临界粗糙度σ_c,当σσ_c时,随粗糙度的增大,内行程向内的剪切流量大于向外的压差流量,内行程泄漏量为正值,表现为越来越小的内泄漏;当σ≥σ_c时,随粗糙度的增大,内行程向内的剪切流量小于向外的压差流量,内行程泄漏量为负值,表现为越来越大的外泄漏。随着速度的增大,其临界粗糙度随之增大;随粗糙度的增大,平均油膜厚度增大,而粗糙度对量纲一化油膜厚度影响很小。研究方法为往复密封结构设计与优化提供了依据。  相似文献   

6.
基于混合润滑理论建立往复密封数值仿真模型,该模型综合考虑了密封系统中密封件的宏观固体力学变形、密封接触区微观粗糙峰接触、油膜厚度分布等因素,可以分析得到往复密封摩擦力、泄漏量等关键性能参数。以往复密封常用的斯特封为研究对象,通过往复密封基础试验台测量表征往复密封特性的关键参数摩擦力及泄漏量。试验与仿真结果表明:斯特封的瞬时摩擦力随着介质压力的升高而增大,反装斯特封的泄漏量随着往复行程的累积而增加。试验测量结果与仿真模型计算结果基本一致,验证了仿真模型的正确性。  相似文献   

7.
构建一种适用于多唇往复滑环式组合密封的数值模型,数值模型中包含固体力学分析、流体力学分析、接触力学分析、流固耦合分析。以含有3段密封唇的PS封为例,基于数值模型求解得到密封面油膜厚度分布、油膜压力分布、粗糙峰接触压力分布,以及内外行程的流量和密封界面的摩擦力。该数值计算方法解决了多唇密封中边界条件难确定的问题,通过迭代计算可得到稳态运行时各密封唇的边界条件。明确多唇PS封的密封机制,分析不同往复速度对密封性能的影响。结果表明:多唇PS封内外行程中各唇边界条件差异较大,外行程中,两唇之间的空隙处存在一定压力,内行程中空隙压力为0;外行程的密封面接触压力要小于内行程;增大往复速度会使多唇PS封净泄漏增加,摩擦力减小。  相似文献   

8.
为准确研究斯特封高速摩擦与密封特性,基于混合润滑理论,综合流体空化效应、密封接触变形和微观粗糙峰接触等因素影响,建立了斯特封摩擦与密封的数值计算模型。研究了往复运动速度和密封压力对油膜厚度、摩擦力和泄漏量的影响,搭建了往复密封试验台来验证模型的准确性。结果表明:计算摩擦力与实验摩擦力相近。混合润滑模型能更好地模拟高速柱塞副斯特封的摩擦与密封特性,油膜压力与粗糙度接触压力共同影响密封性能,但粗糙度接触摩擦起主导作用。  相似文献   

9.
为研究往复密封轴用ZHM型气动组合密封圈在静、动密封工作时的密封性能,利用有限元软件ANSYS建立ZHM气动组合密封圈二维轴对称有限元模型,分析压缩率、摩擦系数、工作压力、往复运动速度对其密封性能的影响.结果表明:摩擦系数的增大对其密封性能无明显影响;速度的增加对外行程影响较小,内行程随速度的增加而增大;密封圈的压缩率以及工作压力的增大均会使其密封性能提升,但同时也会产生密封圈松弛、磨损等负面影响.  相似文献   

10.
为优选摩擦性能优异的密封用PTFE复合材料,搭建往复密封测试台架,对比研究5类填充PTFE密封圈在长期运行工况下的摩擦磨损性能,并对其失效机制进行分析。结果表明:含Cr_2O_3减磨剂的青铜/PTFE复合材料具有优异的低摩擦、耐磨损与抗蠕变性能,泄漏量较少(往复30万次泄漏为10 mL),性能最优;碳粉/石墨填充的PTFE复合材料虽然摩擦因数较低,但其磨损量较大,泄漏量较多;碳纤、玻纤填充的PTFE复合材料摩擦力最大,且抗蠕变性能差,试验过程中密封圈径向尺寸变化明显,泄漏量大。对PTFE往复密封圈而言,填充Cr_2O_3减磨剂的青铜/PTFE复合材料具有较高的实用价值。  相似文献   

11.
利用FLUENT软件建立冲击气缸往复运动间隙密封的模型并结合实验测试系统对其密封性能进行研究。为控制和减小往复运动中间隙密封的泄漏量,分析活塞往复运动速度、间隙进出口压差对其的影响。结果表明,当密封间隙宽度不变时,冲击气缸往复运动间隙密封的泄漏量随入口压力增大线性增大,并且压差与泄漏量的变化率不受活塞速度变化的影响;当密封间隙宽度不变时,在相同的入口压力下,泄漏量随着活塞速度的增大线性增大;冲击气缸的操作压力变化范围小导致其对泄漏量的直接影响不大,但是不能忽略压力变化通过对速度的影响而引起泄漏量的增大。  相似文献   

12.
气缸中气动往复Y形密封圈在内外行程2种不同运动方向的变形差别比较大,产生的摩擦力也不一样。根据气缸功能的不同,气缸中Y形圈有2种不同的运动方向,即向着无压力侧方向运动和向着有压力侧方向运动。而Y形圈在2种不同的运动方向的变形差别比较大,产生的摩擦力也不一样。通过一种能分别测量气动往复Y形密封圈2个方向摩擦力的试验台,测量不同压力、不同速度、不同运动方向时Y形密封圈的摩擦力,探讨气缸工况对摩擦力的影响规律。结果表明:外行程方向的摩擦力明显大于内行程方向的摩擦力;随着压力的增大摩擦力也增大;在低速下,Y形圈摩擦力比较大,随着速度的增加,摩擦力先大幅下降后又缓慢上升。通过比较试验数据和有限元仿真结果,验证了试验结果的可靠性和试验方法的可行性,并计算了可用于有限元仿真的Y形密封圈不同速度下的摩擦因数,为研究和设计气动密封提供了基础数据。  相似文献   

13.
该文以往复轴用阶梯圈为研究对象,利用往复密封试验台架,测试了不同密封圈材料和不同工况条件下往复轴用阶梯圈的泄漏量、磨损率和挤出宽度等,研究了材料配方、试验压力和往复速度对轴用阶梯圈寿命的影响,并对密封失效原因进行了分析。结果发现,往复密封轴用阶梯圈具有良好的动密封性能,特别是高压下密封性能更佳。材料配方、试验压力和往复速度是影响往复轴用阶梯圈使用寿命的三个重要因素。  相似文献   

14.
利用大型非线性有限元软件Marc建立了C形密封圈(简称C形圈)三维有限元模型,用单轴拉伸试验确定了C形圈材料聚四氟乙烯的参数。介绍了C形圈密封机理以及泄漏通道的形成机理。重点分析了介质压力对C形圈主材料聚四氟乙烯的最大Von Mises应力的影响以及C形圈压缩率和介质压力对C形圈主材料聚四氟乙烯接触应力的影响。同时,利用罗思·A密封理论分析了C形圈压缩率以及密封件表面粗糙度对C形圈泄漏率的影响。研究表明:当介质压力增大时,C形圈聚四氟乙烯部分的最大Von Mises应力整体是增大的;随着C形圈压缩率和介质压力的增大,C形圈聚四氟乙烯部分的接触应力也在增大;C形圈的泄漏率随着压缩率的增加而减小,随着密封件表面粗糙度的增大而增大。  相似文献   

15.
起落架减震支柱是飞机的重要部件,其密封失效会导致飞机强烈的颠簸跳动,进而影响任务的执行和飞行安全。选取某型飞机起落架减震支柱用T形密封圈,通过ABAQUS有限元软件对T形圈进行仿真,获得不同工况下T形圈的应力应变云图,分析T形圈静态接触压力随工作压力和摩擦因数的变化规律;建立往复密封T形圈的混合润滑模型,以摩擦力和泄漏量作为评价指标,获得往复运动速度对T形圈密封性能的影响。结果表明:工作压力每增加5 MPa,最大von Mises应力增加1.2倍左右,上部支撑环与T形圈右侧的接触区域为易发生失效部位;最大应变量受摩擦因数影响较小,主要出现在下部支撑环与T形圈接触的圆角位置;随着缓冲支柱运动速度的提高,净泄漏量增加,摩擦力减小。  相似文献   

16.
真空环境中O形密封圈泄漏分析   总被引:1,自引:0,他引:1  
使用ABAQUS有限元分析软件建立了O形密封圈的二维轴对称模型,重点研究了压缩率与介质压力对O形圈接触应力、接触长度的影响,结果表明:O形密封圈的接触应力大小与接触宽度随着压缩率和介质压力的增大而增大。除此之外,通过应用Roth.A真空泄漏理论分析了压缩率、表面粗糙度、温度对O形密封圈密封性能的影响,结果表明:O形密封圈的泄漏率随着压缩率的增大而减小,随着表面粗糙度和温度的增大而增大,为了保证O形圈的密封性能,应当适当提高压缩率与密封表面的加工精度。  相似文献   

17.
针对高温、三维复合运动(往复+旋转)耦合作用下冲击螺杆钻具传动轴总成密封失效问题,设计氢化丁腈橡胶热老化试验,基于热老化试验数据建立热老化效应冲击螺杆钻具传动轴总成O形密封圈三维有限元模型,采用有限元方法研究流体压力、温度、摩擦因数和往复速度对传动轴总成O形密封圈静密封及动密封性能的影响。结果表明:静密封状态下高应力区位于O形密封圈右侧,高接触压力区位于O形密封圈内接触面、外接触面和侧面,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大,最大接触压力整体上随着摩擦因数的增大而减小;动密封状态下最大von Mises应力和最大接触压力在往复速度为0.4 m/s和摩擦因数为0.25出现异常规律,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大。由此建议密封圈在静密封和动密封状态,在往复速度小于0.4 m/s和较小摩擦因数下运行。  相似文献   

18.
纯水密封摩擦力大、泄漏量大、寿命短,无法为矿井液压系统稳定工作提供可靠有效的保障,从而导致开采过程中出现安全隐患。针对上述问题,利用有限元分析软件ANSYS建立复合密封件二维轴对称模型,在其他条件相同的情况下,分析不同径向间隙、不同压力载荷对密封静态和动态性能的影响,得到密封接触应力变化时对密封性能的影响规律,通过对不同径向间隙进行参数化设计,找到满足工作条件的最优径向间隙。仿真分析表明:径向间隙为0.25 mm时,复合密封件在1.5倍公称压力下的接触应力为49.854 MPa,密封效果最好;径向密封间隙为0.375 mm时,接触应力过小会导致泄漏现象产生;径向间隙为0.125 mm时,虽然密封性能进一步提升,但是接触应力的增大导致密封件磨损加速。实验表明:0.25 mm径向间隙液压缸密封寿命可达到20000次,较0.125 mm径向间隙液压缸密封寿命长约1/3。  相似文献   

19.
活塞往复动密封是活塞压力平衡器核心部件,传统活塞往复密封在深海大压力下容易出现爬行、泄漏等现象。基于传统油压往复密封理论,提出一种新型串联式组合往复动密封结构,该结构以矩形直通式迷宫密封为前置密封,以星形密封圈为主密封。通过有限元分析验证迷宫密封对流体压力耗散作用,并确定出星形圈初始压缩率。研究表明:迷宫密封对流体压力具有明显耗散作用,可为主密封创造有利的密封条件;主密封接触应力大于静水压力,结合密封判定条件,可判定新型组合密封整体性能满足设计要求。  相似文献   

20.
针对液压缸传统的活塞密封,如接触密封、间隙密封存在的不足,将接触密封与间隙密封沿活塞轴向有机集成,提出一种新型串联式组合密封结构。建立该结构的数值分析模型,通过数值仿真获得流场压力分布、密封圈变形与内泄漏特性,以及结构参数对密封性能的影响规律。结果表明:在进出口压力相同的情况下,相比于接触密封,组合密封的内部结构中压力损失更大,密封圈受到的压力和冲击更小,有利于减少密封件变形;组合密封结构中端部的间隙密封对油液实施了阻滞,使中间的密封圈承受的油液冲击和压力变弱,因而密封圈变形更小;组合密封的多级密封结构能更好地屏蔽泄漏,提升密封性能;组合密封内泄漏受间隙密封长度、密封间隙和油液压力的影响,增大间隙密封长度、减小密封间隙和油液压力,可减少泄漏量。内泄漏物理实验进一步表明,该组合密封能有效减少内泄漏量,提高密封性能,且在密封圈出现损伤故障时,仍能在很大程度上抑制或减少内泄漏,提高密封效果与可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号