首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
未知激励下的土木工程结构响应信号通常是随机的且噪声水平较高,因此对其进行参数识别具有挑战性。从未知激励下的振动响应信号出发,结合随机减量技术、解析模态分解、希尔伯特变换和卡尔曼滤波理论提出一种新的未知激励下土木工程结构模态参数识别新方法。该方法首先采用随机减量技术将实测的振动响应信号转换成自由振动响应信号;其次,运用解析模态分解理论将转换后的自由振动响应信号分解成各阶独立的模态分量信号;最后,采用希尔伯特变换估计出各阶分量信号的固有频率和模态阻尼比。然后运用卡尔曼滤波算法对估算出的频率和阻尼比进行滤波和平滑以得到更精确的识别值。通过一个含有密集模态分量的合成信号和一个未知激励作用下4层钢框架结构试验验证了该方法的有效性,研究结果表明:该方法在未知激励情况下仍然能够准确有效识别结构固有频率和阻尼比。  相似文献   

2.
基于HHT的利用结构自由振动响应进行系统识别的方法,只需要测得一点的响应就能得到各阶模态频率和阻尼比,通过各点的响应分析可以得到各阶振型,从而求得结构的刚度矩阵和阻尼矩阵。通过对一个4层2跨2开间的钢筋混凝土框架结构模型进行了锤击测试试验。用HHT方法识别其各阶频率、振型和各阶阻尼比,并计算得到刚度矩阵和阻尼矩阵。由识别的刚度矩阵可以看出用考虑节点转角并进行静力凝聚的杆系一层模型能较精确地反映框架结构的振动。试验数据分析还表明,当初始振幅较大时框架结构的阻尼比具有时变性,随着振幅的减小,阻尼比减小。  相似文献   

3.
基于解析模式分解的密集工作模态参数识别   总被引:1,自引:0,他引:1  
长大跨度的桥梁结构或者高层建筑的工作环境振动响应中经常包含密集的模态成分,并会出现模态叠混现象,而传统的信号分析方法往往难以识别结构的密集模态参数。提出一种基于解析模式分解理论与随机减量技术相结合的方法识别环境激励下的结构密集模态参数。对于工作环境激励下的结构振动响应,通过随机减量技术可以提取结构的自由振动响应,利用解析模式分解方法对具有密集模态的自由振动响应进行有效的分解,对每一阶自由振动响应利用最小二乘拟合方法识别出频率与阻尼比。通过两层框架的数值模拟以及对密集频率的密集程度指数和信号时程长度等参数分析,其结果表明通过随机减量技术提取的自由振动响应可以有效的减少模态叠混的影响,虽然提取的自由振动响应的时程长度比实际的信号时程要短,然而解析模式分解仍然能够十分有效的对短时程具有密集模态成分的信号进行有效的分解。最后,通过对一具有密集模态的36层框架的数值模拟,以及对一具有密集模态的3层框架的振动台实验,验证该方法可以有效的识别出环境激励下的结构密集模态参数。  相似文献   

4.
简要介绍独立分量分析(ICA)的基本原理,提出将ICA方法与随机减量法(RDT)结合起来用于随机激励下结构的模态参数识别。结合数值仿真算例和振动试验分析,验证所提出方法用于随机激励下结构模态参数识别的有效性。结果表明,ICA可以准确地从结构随机振动响应信号中分离出各源信号,并同时估计出各阶模态振型向量,源信号与结构模态坐标存在一一对应关系,再结合随机减量法和单模态识别法可识别各阶模态的频率和阻尼比。该方法仅利用振动系统的输出响应进行分析,适用于随机激励下结构的工作模态参数识别。  相似文献   

5.
提出利用分段积分列方程识别阻尼比方法。用快速傅里叶变换加连续傅里叶变换(Fast Fourier Transform plus Continuous Fourier Transform,FFT-FT)识别响应信号固有频率,并据此构造复指数函数;与响应信号进行两次时间不同的内积运算,控制运算时间为响应信号半周期整数倍;推导衰减系数计算公式,识别阻尼比。该方法具有控制内积运算时间消除负频率项影响特点,不受阻尼大小、采样长度限制,识别精度高,结合迭代运算能识别密集模态阻尼。仿真计算、实验表明,在曲轴阻尼实验中,该方法能准确识别阻尼的微小变化,具有工程实用性。  相似文献   

6.
根据高拱坝泄流结构自身的工作特点,为准确辨识环境激励下的结构模态参数特征,提出了一种基于改进的HHT-RDT算法的高拱坝泄流结构工作模态识别方法。以某高拱坝原型振动响应测试资料为基础,利用改进的小波阈值-EMD算法对原始信号进行降噪预处理,滤除干扰噪声的同时保留有效特征信息;采用HHT-RDT算法识别高拱坝泄流结构的工作模态参数,运用带通滤波对振动响应信号的EMD过程进行控制得到结构的各阶模态分量,利用RDT法提取各阶模态分量的自由衰减信息,识别出高拱坝泄流结构系统的固有频率及阻尼比。工程实例表明,该方法避免了复杂系统定阶过程,有效提高结构振动响应工作模态识别精度,为辨识高拱坝泄流结构的工作模态参数提供捷径。  相似文献   

7.
任一种分布的激励必将引起多个模态的响应,试验中要激出单一模态振动是很难的,传统阻尼比估算方法所采用的信号处理手段不能有效分离叠加模态,以致测试阻尼比往往误差较大。从多自由度叠加法动响应分析入手,指出模态混叠现象是制约精确阻尼比测试的重要因素,在阻尼较大、刚度较低时模态更密集、叠加效应更显著,提出通过数值计算进行模态截断以实现"纯模态"提取的方案,推导了共振激励下试验与数值仿真结果中频响峰值谱线表达式,找出二者间的关系,用纯模态计算结果修正测试阻尼比。通过对4块不同板单元进行前8阶试验模态分析与数值计算参数修正,结合频响函数验证了修正阻尼比的数据可靠性,得出了不同结构、材料间阻尼比差异的部分规律。结果表明,模型试验对复合材料板的阻尼比识别准确性要低于钢板,其阻尼性能往往被低估且修正幅度较大,该方法为模态参数识别的进一步研究提供了思路。  相似文献   

8.
对系统响应的协方差作小波的时频分解,利用信号互协方差与自协方差的小波变换系数的比值来识别结构的工作模态振型,由矩阵奇异值分解(SVD)从小波变换时频分析结果确定小波脊,通过实际结构多测点数据,利用小波系数比值来反映振型,识别结构各阶工作模态参数(固有频率、阻尼比和振型)。用数值模拟算例和实桥环境振动试验数据对方法进行了验证,并与频域峰值法和时域随机子空间识别方法结果进行了比较,结果表明,该方法可以准确地识别出结构的工作模态参数,特别是阻尼和振型的识别。  相似文献   

9.
根据在北冕台风及汶川远震作用下某270 m高大楼顶层实测得到的加速度响应数据,对该高楼的结构动力参数和气动阻尼进行了识别。采用两种方法识别得到了该大楼的模态振动频率和阻尼比参数。一是经验模态分解(EMD)结合随机减量法(RDT)及希尔伯特黄变换法(简称EMD+RDT),另外采用了基于贝叶斯理论和快速傅里叶变换的识别方法。利用EMD+RDT法,还得到了阻尼比随加速度幅值的变化规律。两种方法识别得到了非常一致的模态振动频率结果。然而,在台风作用和地震作用下所识别的大楼阻尼比特性却表现出明显不同的特性和规律,这种不同主要是由于在台风作用下的建筑物阻尼包含了气动阻尼成分。如果把地震作用下识别得到的该高楼阻尼比作为结构阻尼比,台风条件下识别得出的阻尼比为总阻尼比,则二者相减可以作为该楼气动阻尼比的估计。  相似文献   

10.
准确获得模态特征是输电塔抗风抗震等动力响应分析的关键,其中阻尼参数识别尤为重要。以一基85.5 m高的输电塔为背景,对输电塔的动力特性参数识别进行了研究。根据脉动风作用下实测加速度响应特征,假设信号分段平稳,采用随机子空间法识别了该塔的频率和阻尼比特征。研究结果表明:该输电塔一阶横线向和顺线向模态阻尼比大于2%,而一阶扭转模态阻尼比仅为1%;在加速度不高于0.1 m/s~2的小振幅振动范围内,阻尼比基本上与振幅无关,识别结果为小振幅下的结构固有阻尼。  相似文献   

11.
准确获得模态特征是输电塔抗风抗震等动力响应分析的关键,其中阻尼参数识别尤为重要。以一基85.5 m高的输电塔为背景,对输电塔的动力特性参数识别进行了研究。根据脉动风作用下实测加速度响应特征,假设信号分段平稳,采用随机子空间法识别了该塔的频率和阻尼比特征。研究结果表明:该输电塔一阶横线向和顺线向模态阻尼比大于2%,而一阶扭转模态阻尼比仅为1%;在加速度不高于0.1 m/s^2的小振幅振动范围内,阻尼比基本上与振幅无关,识别结果为小振幅下的结构固有阻尼。  相似文献   

12.
提出一种环境激励下基于极点对称模态分解(ESMD)的模态参数识别新方法。该方法首先利用带通滤波将实测环境振动响应分解成一系列单卓越频率的窄带子信号。然后,利用ESMD方法对子信号进行模态分解,得到若干单模态时程信号。最后,应用随机减量法对每个单模态时程信号进行处理,获得随机减量信号并由此识别模态参数(频率,阻尼比以及振型)。采用该方法识别一座5层剪切框架数值模型和一座3层剪切框架实验模型的模态参数,并将识别结果与理论值或者NExT-ERA方法识别的结果做对比,结果表明:该方法能较好地从环境振动响应中识别出结构的模态参数,具有良好的适用性和足够的精度。  相似文献   

13.
基于变分模态分解(VMD),提出一种新的结构模态参数识别方法:①通过自由振动试验或通过随机减量法从结构随机振动响应中获取结构自由衰减振动响应(FDR),并采用VMD方法从FDR中分解出结构模态响应;②通过经验包络法(EE)计算模态响应瞬时频率,并通过一种该研究新提出的方法计算模态响应瞬时阻尼比;③结构的模态振型向量可通过处理所有可用传感器得到的模态响应得到。瞬时模态频率和模态阻尼比可以捕获模态参数的任何瞬态变化。通过一系列数值和试验算例验证了该方法的有效性,突出了该方法的优势,并对该方法抗噪声性能进行了研究。研究表明,该方法适用于线性和非线性系统,且可用于识别具有密集模态和瞬态特性的系统。  相似文献   

14.
模态响应识别的粒子群优化方法在倾转旋翼机上的应用   总被引:1,自引:0,他引:1  
利用粒子群优化算法识别模态频率和阻尼比的方法无需测量激励信号,且不受邻近模态耦合的影响.阐述了简谐激励作用下利用粒子群优化方法对系统模态参数的识别过程,指出了在信号经过滤波处理后该方法不能精确识别信号模态相位的缺陷,并提出了改进方法.通过仿真计算以及应用改进的方法对倾转旋翼模型机翼端部的振动信号进行识别和分析,表明改进的方法可以精确识别出信号中各模态响应的相位值,能够有效地对系统的模态响应进行识别.  相似文献   

15.
杨彦龙  程伟 《振动与冲击》2012,31(10):9-12,28
提出了一种基于R-TPBSS算法的结构模态参数识别方法。该方法通过对响应信号进行稳健性白化处理,提高了算法的抗噪性。该方法将模态坐标和模态振型分别视为独立源信号和混合矩阵,以模态坐标的时间预测性大于响应信号的时间预测性为前提构造目标函数,通过优化目标函数,直接从结构自由响应中分离出各个模态,配合单点模态参数识别方法,提取出结构的模态参数。仿真结果表明,此方法具有很高的识别精度,对噪声很好的鲁棒性,密集模态下,同样能够准确的识别出结构的模态参数。  相似文献   

16.
针对从受噪声污染的脉冲响应信号和快速正弦扫频响应信号中识别振动系统的单模态和密集多模态的频率问题,将小波变换与奇异值分解(SVD)滤波相结合,利用基于小波变换的能量分布函数,为了提高对密集模态和含有噪声信号的识别效果,对该能量分布函数求n次方,再进行奇异值分解后,根据奇异值,求出主要分量,然后通过主要分量对应的n次方尺度图或频率计算公式,识别出模态的频率。仿真结果证明了该方法的有效性和可行性。  相似文献   

17.
基于希尔伯特变换结构模态参数识别   总被引:1,自引:0,他引:1  
应用HHT方法对GARTEUR飞机模型模态参数进行识别,通过采用多通带滤波器对信号进行滤波,较好的解决模态混叠问题,采用NExT法对信号预处理,由EMD分解获得较准确的各阶固有模态函数分量(IMF),在EMD分解中使用镜像延拓方法对极值点进行处理来抑制端点效应,然后将分解得到的IMF分量进行希尔伯特变换并结合ITD法识别出各阶固有频率和阻尼比。最后对悬臂梁进行数值仿真模拟,并将模态参数识别结果和理论值进行对比,并运用此方法进一步识别GARTEUR飞机模型固有模态参数。  相似文献   

18.
基于解析小波变换识别结构的模态阻尼参数   总被引:2,自引:1,他引:1       下载免费PDF全文
摘要: 在结构振动分析中,结构的模态参数尤其模态阻尼参数的准确识别是一项十分重要的任务。基于Gabor小波函数的解析小波变换(AWT)通过小波函数与复值信号的匹配机制揭示信号的幅频和相频信息以实现结构模态阻尼参数的识别。本文基于小波变换(WT)理论,讨论了Gabor小波函数的特性及解析小波变换的时频分辨率和端点效应问题;为实现结构模态阻尼参数的准确识别,我们提出了Gabor小波函数参数选取和有效信号长度确定的依据。最后,一个频率呈密集分布的三自由度(3DOF)结构的数值模拟数据验证了本文提出的模态阻尼识别方法的有效性。  相似文献   

19.
环境激励下大型桥梁模态参数识别的一种方法   总被引:3,自引:2,他引:1       下载免费PDF全文
提出一种依据环境激励下结构振动响应的大型桥梁模态参数识别方法,该方法以限制带宽的经验模态分解(BREMD)和随机子空间识别(SSI)为基础,首先利用EMD将环境振动响应分解成一系列只含结构某一阶固有模态的本征模态函数(IMF),然后利用SSI识别桥梁模态参数。针对大型桥梁自振频率低、模态密集的特点,引入屏蔽信号限制EMD过程中带宽以消除模态混叠;运用该法识别了赣龙铁路某特大桥的模态参数,并将其与峰值拾取法、SSI识别结果以及理论计算值进行对比,结果表明:该方法能有效的识别大型桥梁模态参数,屏蔽信号的引入解决了模态混叠问题,稳定图中的虚假模态得到抑制。  相似文献   

20.
Karhunen-Loève(KL)变换作为一种基于相关函数的最佳变换,在振动分析领域已经受到广泛关注。然而,该方法还缺乏清晰完整的模态解释。在空间几何上,振动分析中模态分解是振动响应信号在由振型构成的基底上的展开,KL变换是信号在由一组正交KL特征向量构成的空间中的投影过程。对环境激励下响应的KL变换与模态分解进行类比,探讨两者间的关系。结果表明:KL特征向量收敛于质量信息加权后的振型;KL特征值表征各阶模态的能量参与度;KL变换系数收敛于模态坐标。最后,通过仿真计算验证分析结论的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号