共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
提出了基于混合高斯输出贝叶斯信念网络模型的齿轮磨损状态识别新方法,建立了变量消元算法和期望最大化算法相结合的模型推理算法,通过计算待识别磨损特征向量的概率值来确定齿轮磨损状态。针对期望最大化算法容易局部收敛的问题,对其进行了改进,使其更容易获得全局最优值。根据磨损特征之间的非线性关系这一特性,应用曲线距离分析方法对特征进行降维。最后,利用五种不同工况下的齿轮磨损实验数据对模型进行验证。结果表明,该模型可以有效地识别齿轮磨损状态,识别正确率可以达到99%,为齿轮箱的健康管理提供了科学依据。 相似文献
4.
5.
《振动与冲击》2019,(23)
退化状态特征的提取是滚动轴承退化状态识别与评估的关键。干扰属性投影(Nuisance Attribute Projection,NAP)能克服传统方法无法准确提取退化状态特征的不足,但在全寿命阶段上单调性和敏感性差,将排列互相关(Ranking Mutual Information,RMI)用于NAP的优化,从而准确评估轴承退化状态。应用优化正交匹配追踪(Optimized Orthogonal Matching Pursuit,OOMP)对振动信号降噪;将NAP计算的特征向量PE值与参考PE值对比识别轴承退化状态;应用RMI增强PE值对于信号细微变化的敏感性和全寿命阶段的单调性从而准确评估其退化状态。试验验证,滚动轴承性能退化状态识别率高,能高精度、分阶段评估轴承性能退化状态。 相似文献
6.
7.
本文提出基于切削振动相关性识别刀具磨损状态的研究思想,建立了车削中刀杆双向横振动系统及其单输入双输出系统的数学模型。理论和实验均表明,刀杆双向横振动之加速度响应在固有基频处的相干函数与刀具磨损状态之间有很好的规律性,它反映了两者之间的本质机理,并提供了识别刀具磨损状态的新途径。 相似文献
8.
9.
为了探索基于振动谱图像模式识别的智能故障检测方法,以滚动轴承为对象,提出了用SPWVD分布来表征振动信号时频分布特性,利用SPWVD图像的GLCM及其特征统计量来提取故障特征。改进了人工免疫网络分类算法,通过人工免疫网络分类方法对故障样本特征统计量进行学习,形成记忆抗体集,进而对检验抗原进行故障分类识别,在故障特征信号干扰严重的情况下,取得了较BP神经网络好的检测准确率,验证了人工免疫网络良好的适应性。随着智能故障检测技术发展,基于图像模式识别的故障检测方法必将得到推广和应用,本文验证其在轴承故障监测中的可行性。 相似文献
10.
用传统的线性方法对非平稳和非线性运行状态的滚动轴承进行故障诊断时,效果欠佳。为了及时、准确地监测轴承的运行状态,提出了将拉普拉斯特征映射算法(Laplacian Eigenmap LE)应用到滚动轴承的故障识别中。在振动信号构建的时域和频域高维特征空间矩阵中,充分利用LE算法在非线性特征提取和降维的优点,进行学习,提取表征轴承状态的特征量,并以可视化的聚类结果进行表示。实验模拟了轴承的4种不同类型故障以及滚动体的4种不同受损程度,采用模式识别中聚类性的类内距和类间距两个参数作为衡量指标。与PCA和KPCA两种方法对比,LE不仅明显识别出四种故障类型和有效的区分出滚动体的不同受损程度,而且识别率大大提高。并通过测试样本组验证了LE方法的有效性。 相似文献
11.
工程应用中的滚动轴承故障类型识别要求同时具有较高的识别准确度和时间效率,基于上述需求提出基于Transformer神经网络的滚动轴承故障类型识别方法。所提方法结合小波包变换时频域能量特征和快速傅里叶变换频域特征生成满足Transformer神经网络的输入样本矩阵,解决Transformer神经网络的输入问题。同时,提出应用于滚动轴承故障类型识别的归一化位置编码方法,解决Transformer神经网络在滚动轴承故障分析领域的位置编码问题。在此基础上,提出Transformer神经网络双向输入样本矩阵处理机制和算法训练过程中错误样本权重增强机制,提升所提方法的鲁棒性。使用KAt数据中心的滚动轴承数据集验证所提方法的识别性能,与现有常用深度学习方法相比,所提方法在时间效率和准确度性能上均有一定的优势,其中,准确度能够提升11%以上,单个样本的平均处理时间小于1 ms。 相似文献
12.
《中国测试》2016,(1):87-91
针对刀具磨损监测中信号的非平稳特性和小样本建模中神经网络容易陷入局部值的问题,提出基于多传感器信号,运用集合经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machine,SVM)相结合的算法,实现对刀具磨损多状态的识别。首先对振动信号进行集合经验模态分解,将其分解为若干个本征模态函数(intrinsic mode function,IMF)之和,然后计算得到三向切削力信号的均值和各本征模态函数分量的能量百分比值作为磨损状态分类特征,最后运用支持向量机和Elman神经网络对刀具在不同磨损状态下的特征数据样本进行训练和识别。实验结果证明该方法能很好地实现对刀具磨损状态的识别,与Elman神经网络相比,支持向量机具有更高的识别率,更适合小样本情况下刀具磨损状态的分类识别。 相似文献
13.
《中国测试》2020,(3)
针对滚动轴承在出现故障时其振动信号呈现出非线性、非平稳特性,以及退化特征难以提取等问题,将局部特征尺度分解法应用到轴承振动信号分析中,并与信息熵理论融合提出局部特征尺度分解谱熵的滚动轴承退化特征指标。该方法首先对不同故障程度的轴承振动信号做局部特征尺度分解,基于得到的内禀尺度分量计算振动信号得能谱熵、奇异谱熵和包络谱熵用于表征轴承故障程度,仿真信号分析结果表明以上特征指标能够较好地反映滚动轴承的退化状态。对内圈故障和外圈故障模式下不同程度故障的轴承振动信号进行分析,结果表明该文提出的退化特征能够有效表征轴承的退化状态,并采用灰关联分析法构建轴承退化状态识别模型,可有效实现轴承退化状态识别。 相似文献
14.
15.
16.
基于循环频率能量的滚动轴承损伤程度识别 总被引:4,自引:0,他引:4
基于二阶循环平稳理论,在轴承振动信号循环相干分析的基础上,提出循环频率能量指数(cyclic energy indicator,CEI)来定量表征滚动轴承的损伤程度。轴承仿真和预设损伤实验数据表明,CEI随损伤程度增加而增加,可正确有效指示轴承损伤程度。进行了轴承加速寿命实验,实验结果分析表明,在轴承正常运行时,CEI和有效值(RMS)一样可保持稳定状态;在轴承状态恶化时,CEI显示了比RMS更早更高的损伤灵敏度。 相似文献
17.
故障特征提取是轴承健康状态描述的关键,然而当前常用方法提取的特征往往维数较高或信息缺失,无法单调性地反应轴承健康状态,且预测结果不能有效反应轴承退化趋势。应用累积马氏距离(MD-CUSUM)实现特征降维并得到健康指标(HI),能够在低维层面上单调性地反应轴承健康状态;构建时滞性支持向量回归(TD-SVR)模型,提高滚动轴承健康状态预测精度。通过试验数据分析对比了MD-CUSUM与等距特征映射(ISOMAP)的优劣,结果表明MDCUSUM和TD-SVR相结合在轴承健康状态预测方面具有更好地效果。 相似文献
18.
基于改进一维卷积神经网络的滚动轴承故障识别 总被引:1,自引:0,他引:1
滚动轴承的故障识别对于防止旋转机械系统故障恶化并保证其安全运行具有重要意义。针对现有智能诊断模型参数多、识别效率低的问题,提出一种基于改进一维卷积神经网络的滚动轴承故障识别(FRICNN–1D)方法。通过引入1×1卷积核增强一维卷积神经网络模型的非线性表达能力;并用全局平局池化层代替传统卷积神经(CNN)网络中的全连接层,以降低模型参数和计算量,且防止过拟合现象。试验结果表明,该方法可以准确识别滚动轴承不同故障状态,具有一定的工程实际应用潜力。 相似文献
19.
基于径向基函数网络的刀具磨损识别 总被引:1,自引:0,他引:1
提出了一种基于灰色关联度优化网络神经元数目和径向基函数网络用于刀具磨损量预测的方法.以选取合理的涵盖影响刀具磨损的有关因素,采用不同切削条件下铣削加工过程刀具后刀面磨损的多组实验数据对网络模型进行训练以及对刀具磨损量进行估计和预测,预测结果与实际基本吻合.结果表明,该方法克服了用一个多元线性公式描述由切削条件和切削带来的后刀面磨损量的变化的刀具磨损高度非线性模型方法的缺陷,对于与刀具磨损量相关因素的非线性本质较易准确表达,所建立的刀具磨损网络模型可以较满意地计算出不同切削条件下刀具后刀面的磨损量. 相似文献