首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑齿侧间隙、时变啮合刚度和摩擦力等因素,建立7自由度剪式齿轮传动系统非线性动力学模型,采用Runge-Kutta法对转速、啮合齿隙、扭簧刚度、预紧力矩等对系统振动特性的影响进行了研究。结果表明,随着转速的升高系统逐渐进入混沌状态,中等转速区间系统的非线性动力学行为对转速的变化更为敏感;随着齿侧间隙的增大,混沌区间增大,混沌特性加强;扭簧刚度影响系统的非线性运动状态,但对冲击现象的影响较小,较小的扭簧刚度更有利于消除冲击现象;扭簧的预紧力矩影响系统啮合状态,最小预紧力矩的大小受负载力矩的影响且近似呈正比例关系。  相似文献   

2.
齿面间的擦边碰撞是齿轮-轴承传动系统中一种特殊碰撞形式,可能会导致系统的动力学特性发生改变。为深入探究擦边碰撞对齿轮系统动力学特性的影响,基于频闪映射、齿面和齿背碰撞面Poincaré映射得到系统周期及啮合力变化规律,揭示齿轮副啮入、啮出冲击特性。并利用分岔图、啮合力变化图、相图和最大Lyapunov指数图(the largest Lyapunov exponent, TLE)分析擦边碰撞对系统动力学特性的影响。研究表明,擦边碰撞会引起系统动力学行为发生复杂的变化,导致系统运动和冲击状态发生改变。当啮合力突变点处TLE小于零时,系统周期保持不变而啮合力发生突变,但相轨迹的拓扑结构未发生变化。当啮合力突变点处TLE近似为零时,系统运动发生分岔,系统周期数和啮合力均发生改变。该研究揭示了齿轮-轴承系统擦边碰撞引起的一些复杂动力学现象,为系统的安全运行、优化设计等方面提供参考。  相似文献   

3.
为了对齿轮系统进行更加深入的研究,综合考虑时变轴承动力学参数以及动态齿侧间隙的影响,建立了齿轮系统动力学模型并进行了振动响应分析。以圆柱直齿轮为研究对象,将动压润滑轴承模型与齿轮啮合模型相结合,并计入动态齿侧间隙的影响,建立了系统的动力学微分方程。提出了一种齿轮-滑动轴承耦合系统的求解方法,分别研究了轴承间隙、齿侧间隙以及转速对系统振动响应的影响。结果表明:滑动轴承动力学参数的时变特性有助于改善系统的振动响应;在一定范围内增加轴承间隙以及齿侧间隙可以减小齿轮动态啮合力以及径向振动;随着齿轮转频的增加,系统的振动响应幅值减小,运动趋于平稳。  相似文献   

4.
为探讨2K-H行星轮系的非线性动态特性,建立了考虑时变啮合刚度、综合啮合误差和齿侧间隙等强非线性因素的平移-扭转耦合动力学模型,并推导了系统的无量纲化18自由度运动学微分方程组。通过相轨线、Poincare图和时间历程曲线分析了啮合频率、啮合阻尼和齿侧间隙对系统分岔与混沌特性的影响。结果表明:随着啮合频率的增大,系统由激变途径进入混沌状态;增大啮合阻尼可以使系统摆脱混沌运动进入周期运动状态;在高速轻载时,系统的动态响应对间隙非常敏感,而在某些间隙范围内,响应只有幅值的改变,动力学行为不发生变化。  相似文献   

5.
针对非等模数非等压力角行星齿轮传动系统,建立了多自由度平移-扭转振动的非线性动力学模型。考虑到齿轮副齿侧间隙、系统综合误差和齿轮副模数与压力角的不相等,计算了系统的均载系数并对由它们所引起的系统不均载特性进行了动力学分析。获得了误差一定且齿侧间隙改变时,啮合副的动载荷曲线与均载系数间的变化关系。讨论了齿轮副模数和压力角分别不同时,系统均载系数的变化幅度。研究表明:随着齿轮副压力角选择范围的扩大,系统均载系数有着较大幅度的变化;齿侧间隙使系统的啮合副处于不同冲击状态,不同冲击状态对系统的均载性能有着重要的影响。  相似文献   

6.
齿面摩擦对面齿轮传动系统振动特性的影响分析   总被引:1,自引:0,他引:1  
为研究齿面摩擦力对正交面齿轮传动系统动态特性的影响,基于集中参数理论,建立了考虑齿面摩擦、齿侧间隙、传动误差、时变啮合刚度、啮合阻尼、支撑刚度和阻尼等参数的正交面齿轮多自由度耦合振动模型,采用龙格库塔数值积分法对系统的动力学方程求解,得到随摩擦系统变换的系统动态响应分岔特性。结果表明,随齿面摩擦系数的变化,面齿轮传动系统的动力学特性有周期响应和混沌响应,动态特性比较复杂。  相似文献   

7.
高洪波  李允公  刘杰 《振动与冲击》2014,33(18):221-226
根据齿面磨损、偏心和轴承的振动等会引起齿轮系统齿侧间隙时变这一特性,提出了基于动态侧隙的齿轮系统齿面磨损故障分析方法。综合考虑动态啮合刚度、动态齿侧间隙、摩擦、偏心等因素建立了单级齿轮传动系统六自由度啮合耦合型动力学模型,给出了全齿均匀磨损和偏心磨损故障的仿真方法,并对含故障齿轮系统动力学行为进行了分析。最后,利用齿轮实验台对齿侧间隙增大的磨损故障进行了模拟,验证了理论分析结果。研究表明,齿轮系统传递误差、振动冲击状态和振动剧烈程度等会随齿面磨损形式和程度不同而变化,为齿面磨损故障的监测与诊断提供了理论依据。  相似文献   

8.
正交面齿轮传动非线性振动特性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
以正交面齿轮传动系统为研究对象,建立了包含时变啮合刚度、啮合阻尼、齿面误差、齿面摩擦、齿侧间隙、轴承间隙等因素的弯-扭耦合非线性动力学模型,采用4-5阶变步长Runge-Kutta法对系统的无量纲动力学微分方程组进行求解。计算结果表明:在不同转速时系统会出现单周期非谐响应、多周期次谐响应、拟周期响应及混沌响应,并伴随着跳跃现象;随着负载转矩的增大,系统响应呈现混沌-多周期次谐-单周期非谐的变化趋势,轻载时齿轮副易出现单边和双边冲击现象,当载荷增大到一定程度后齿轮副处于无冲击状态;摩擦系数较小时,对系统非线性振动特性影响不大,当其逐渐增大时,系统运动状态由单周期经倍周期分叉进入混沌运动  相似文献   

9.
含摩擦力的行星齿轮传动系统非线性动力学模型   总被引:1,自引:1,他引:0       下载免费PDF全文
建立了一种考虑摩擦力、时变啮合刚度、齿侧间隙和综合啮合误差的2K-H型行星齿轮平移-扭转耦合非线性动力学模型。分析计算了啮合齿对间的相对位移,根据啮合区啮合齿对数不断变化的特点,推导出不同啮合齿对间摩擦力力臂计算公式,考虑了双齿啮合区的齿面摩擦力对齿轮系统振动的影响,推导了系统多间隙,变参数和多自由度的动力学微分方程组。最后运用变步长Gill积分法求解系统多自由度间隙型非线性微分方程组,得到了考虑滑动摩擦力影响时系统的振动响应。  相似文献   

10.
分析了齿轮转速波动和齿面、齿背啮合相位差对啮合点的影响,结合单、双齿啮合和修形边界条件并采用解析法计算啮合刚度,建立了与齿轮实际运动状态和啮合状态相关的非线性啮合刚度模型,该模型可与齿轮非线性动力学方程实时反馈,更加准确地描述齿轮传动过程中的啮合刚度。建立了考虑间隙、非线性啮合刚度的2自由度单级齿轮传动非线性动力学模型,在波动转矩的作用下,对比研究齿廓修形参数对齿轮动态特性的影响。研究结果表明:修形量对齿轮动态特性影响显著,存在最优修形量使动载系数达到最小;当修形量超过某临界值齿轮产生单边或双边冲击现象,齿轮动载荷明显增加;外载荷一定,增加修形长度可降低动载系数最小值;波动转矩作用下,齿轮的最大修形量为最小转矩作用下单齿啮合最高点的变形量。  相似文献   

11.
多级齿轮传动系统耦合非线性振动特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
以锥-平行轴-行星多级齿轮传动系统为研究对象,建立了包含时变啮合刚度、啮合阻尼、传递误差、齿侧间隙等因素的18自由度弯-扭-轴耦合非线性动力学模型,采用4-5阶变步长Runge-Kutta法对系统的无量纲动力学微分方程进行求解,研究其耦合非线性振动特性。计算结果表明:随着齿侧间隙的增大,系统响应经倍周期分岔进入混沌运动,且侧隙对系统动态特性的影响随着负载的增大逐渐减小;随着负载的增大,系统响应由混沌经逆倍周期分岔进入单周期响应,齿轮副啮合状态由双边冲击、单边冲击过渡到无冲击状态;当输入转速减小时,混沌区域覆盖的负载范围也随之减小。  相似文献   

12.
建立了一种新的考虑径向间隙与动态齿侧间隙耦合的齿轮转子系统动力学模型,分析了径向间隙与齿侧间隙的耦合关系及其对系统动力学特性的影响。在系统动力学模型中,建立了考虑径向间隙的接触碰撞模型;通过推导齿轮中心距与齿侧间隙之间的函数关系,建立了考虑动态齿侧间隙的齿轮扭转振动模型。进而利用该模型对多间隙齿轮系统的动力学特性进行分析。给出了一对直齿轮副的数值仿真结果,分别分析了径向间隙大小和齿侧间隙大小对齿轮系统动力学特性的影响规律,分析结果对含间隙齿轮转子系统的研究具有重要的理论与工程价值。  相似文献   

13.
多载荷工况下人字齿轮传动系统振动特性分析   总被引:5,自引:4,他引:1       下载免费PDF全文
由轮齿接触分析以及轮齿承载接触分析计算出考虑安装误差的轮齿啮合刚度,建立了考虑时变啮合刚度激励、啮合冲击激励和齿侧间隙激励的人字齿轮系统十二自由度啮合型弯—扭—轴耦合非线性振动模型。以某船用单级人字齿轮副为实例,研究了多载荷下人字齿轮左端啮合副周向的振动特性,结果表明,外载荷的增大使得啮合刚度激励和啮合冲击激励下系统的振动均增大,且啮合冲击激励对外载荷的敏感性高于啮合刚度激励,而齿侧间隙激励下系统的振动则随着外载荷增大而减小。同时,啮合冲击激励对系统振动的影响随着载荷增大而增大,而啮合刚度激励和齿侧间隙激励则随着载荷增大而减小。  相似文献   

14.
为了更合理地分析高速圆柱斜齿轮非线性振动特性、有效抑制齿面振动。通过考虑增/减速状态的轮齿承载接触模型,建立了考虑齿背接触特性的圆柱斜齿轮动态啮合刚度,得出齿面啮合刚度同时与啮合时间和齿面振动位移之间的耦合机理;进一步建立考虑齿面/齿背啮合刚度、线外啮合冲击激励的高转速圆柱斜齿轮传动系统非线性振动模型,并在此基础上展开同时计及齿面、齿背接触状态的双齿面减振修形优化研究。实例计算结果表明,计及齿背啮合刚度的振动加速度明显大于未考虑齿背啮合刚度的振动加速度,且系统表现出更加复杂的分叉特性;相较于标准齿面和单面修形,双面修形的圆柱斜齿轮具有最小的齿面振动加速度,且双面修形齿面在减缓圆柱齿轮振动的同时,也增大了系统可供稳定工作的转速区间范围,具有较好的工程实际应用价值,对提升系统稳定性设计有着积极的指导意义。  相似文献   

15.
汇流传动齿轮-转子-轴承系统非线性动力学分析   总被引:1,自引:1,他引:0       下载免费PDF全文
郜浩冬  张以都  吴琼  高相胜   《振动与冲击》2013,32(8):105-113
考虑齿侧间隙、传动误差和时变啮合刚度等非线性因素,并同时考虑滑动轴承非线性油膜力和齿轮啮合力的耦合影响,建立了汇流传动齿轮-转子-轴承系统的动力学模型。从转速方面出发,研究了齿轮系统的非线性动态响应,分析了齿轮啮合力和非线性油膜力之间的耦合作用,判断了转速变化下的油膜稳定性。结果表明:随着转速变化,系统表现出周期一运动、周期二运动、拟周期运动,混沌等丰富的动力学特性,并发现了拟周期分岔通向混沌的道路;随着转速升高,非线性啮合力和非线性油膜力先后对系统振动起到主要作用;油膜振动通过半频涡动失去了稳定性。  相似文献   

16.
为提高面齿轮传动系统的动力学特性,建立考虑陀螺效应、包含时变啮合刚度、啮合阻尼、齿侧间隙、支撑刚度和阻尼等参数的非线性动力学模型。采用欧拉单步法对非线性动力学方程进行求解,分析模型计算结果的准确性和合理性。分析面齿轮传动系统啮合线位移、啮合力以及面齿轮和圆柱齿轮振动位移与时变啮合刚度幅值系数变化之间的关系,并通过两齿轮质心坐标平面相图得到两齿轮质心的振动情况。  相似文献   

17.
针对齿轮传动系统的动态传递误差、单双边冲击状态、脱齿、拍击及混沌现象等复杂非线性动力学问题,在同时考虑齿侧间隙、轴承间隙、时变啮合刚度及齿面摩擦等非线性特性的基础上,首次提出一种基于有限单元法的多间隙耦合齿轮传动系统的非线性动态特性分析方法。以某单级斜齿轮传动系统为例,利用大型通用有限元分析软件AN-SYS/LS-DYNA建立耦合系统动力学模型,分析支撑状态下耦合系统的非线性动态特性,研究了不同转速及负载力矩对耦合系统非线性动态特性的影响规律。结果表明有限单元法能在满足高精度分析的条件下求解各种复杂工况的齿轮系统非线性动力学问题,为进一步研究齿轮传动系统非线性动力学问题提供有力工具。  相似文献   

18.
建立了包含时变啮合刚度、齿侧间隙与综合啮合误差的Ravigneaux式复合行星齿轮传动系统纯扭转动力学模型。运用增量谐波平衡法对系统运动微分方程组进行求解,得到系统的基频稳态响应。研究了时变啮合刚度、外部激励、齿侧间隙等参数的变化对系统动力学特性的影响。研究结果表明,间隙的存在使得复合行星齿轮系统的频响曲线出现了幅值跳跃与多值解等典型非线性特征,系统参数的共同作用使得复合行星齿轮系统出现了丰富的非线性动力学行为。利用本文的方法可以获得系统任意精度的近似解,为控制系统的振动与噪声,实现复合行星齿轮传动系统动态设计奠定基础。  相似文献   

19.
基于周期扩大法的思想,在考虑齿轮副间的时变啮合刚度、齿侧间隙、齿面摩擦等非线性因素的基础上,建立了齿轮副的六自由度非线性动力学模型;采用数值积分方法求解系统响应,结合分岔图、poincaré截面图、FFT频谱及最大李雅普诺夫指数图(Largest Lyapunov Exponent,LLE),系统地分析了支承阻尼对齿轮系统的影响。结果发现:支承阻尼的提高对系统的混沌吸引子和吸引域有着明显影响,会使其逐渐减小,并使系统的混沌运动逐步退化稳定的周期运动,进而使系统的分岔特性变得更为复杂;随着支承阻尼的提高,系统在径向和扭转方向的1/2次谐振幅度有所降低;支承阻尼对轮齿的啮合的状态有着重要影响,在一定转速区可使系统发生双边冲击到单边冲击的变化。  相似文献   

20.
运用三角网格方法重构了三维离散的圆弧齿啮合齿面模型。基于多体动力学理论和迟滞接触动力学方法,提出了考虑全齿面动态接触关系的螺旋锥齿轮三维接触动力学模型和动力学分析方法。运用三角网格单元接触的包围盒搜索技术和微分代数方程求解方法,仿真分析了单侧齿面接触、双侧齿面接触、负载扭矩和齿侧侧隙等因素对齿轮啮合传动特性的影响,获得了圆弧齿啮合全齿面接触冲击力,力矩和角速度等齿轮啮合传动的动态响应特性。研究表明:新方法和动力学模型较好地模拟了圆弧齿锥齿轮的承载特性和啮合接触动力学特性,对以动力学特性为目标的圆弧齿锥齿轮设计和齿轮系统动力学研究提供了理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号