首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了讨论小孔节流空气静压支承轴承的节流器尺寸,气膜厚度与供气压等轴承参数对轴承力学性能的影响。针对圆柱腔小孔节流静压支承止推轴承,首先进行了轴承间隙流场的数值仿真与分析,其中以小孔尺寸,气腔尺寸,供气压及气膜厚为设计变量,利用正交实验设计的基本原理构造正交表,通过对轴承间隙流场的数值计算进行采样以获取轴承的承载力与刚度;其次在设计变量范围内基于径向基神经网络模型建立承载力与刚度的分析数学模型,在该分析模型中全面考虑了各轴承参数的作用,同时考虑了轴承间隙的流场结构对力学性能的影响,得到的模型经过拟合校验以证明具有足够的精度;最后基于该分析模型讨论了小孔与气腔尺寸对轴承承载力与刚度的影响,为工程设计提供了参考。  相似文献   

2.
位移阻抗性能直接反映了空气静压轴承对外动载荷的抵抗能力,在考虑自激振动削弱的动力学性能设计中应对其进行优化提升。为提升轴承的动力学性能,削弱气锤振动,针对气膜-被支承件系统的位移阻抗进行研究。采用数值仿真方法,引入动网格技术计算位移阻抗,明确多孔空气静压止推轴承的结构、运行参数对位移阻抗的影响机制;基于径向基神经网络模型建立以轴承参数表示的位移阻抗近似分析模型,并采用PARETO分析对比讨论轴承参数对位移阻抗的影响;建立优化设计数学模型,以削弱气锤振动为目的,在气锤振动的频率范围内与给定负载条件下针对位移阻抗进行优化。分析结果表明:由于挤压膜效应,外激励频率对于位移阻抗具有最大影响,位移阻抗随激励频率的增大而急剧增大,因此轴承对于高频外载荷具有较强的抵抗能力,需要着重提升低频激励下的位移阻抗性能;小孔直径、气膜厚度与供气压力对位移阻抗的影响大于气腔尺寸与小孔位置的影响。研究结果与优化建模流程可为轴承的工程设计提供参考。  相似文献   

3.
为提升小孔节流空气静压轴颈轴承的静、动力学性能,针对轴承间隙的流场特性与轴承的承载力、位移阻抗性能进行分析与优化。采用数值仿真方法分析轴承间隙的流场特性,并在参数设计中消除了气膜流场中的超音速区,以避免微振动;分析轴承气膜的刚度、阻尼性能,并采用ESA-CFD(Engineering Simplification Algorithm-Computational Fluid Dynamics)方法计算轴承振动系统的位移阻抗。结果表明,气膜压力自小孔至外边界逐渐衰减,小孔出口出现激波可导致漩涡流动并引起微振动,微振动形成机制与止推轴承相似。建立优化设计数学模型,以轴颈轴承的位移阻抗、承载力为设计目标,并消除轴承微振动,其中考虑多组偏心率与激励频率的组合。通过优化设计,提升了轴颈轴承的力学性能,相关优化、分析过程可为工程应用中空气静压轴颈轴承的设计提供参考。  相似文献   

4.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

5.
考虑激振频率的可倾瓦推力轴承动特性理论与试验研究   总被引:3,自引:0,他引:3  
为了研究激振频率对可倾瓦推力轴承动特性的影响,提出考虑激振频率的动特性建模方法和试验方法。依据可倾瓦轴承刚度和阻尼定义,将激振频率引入可倾瓦推力轴承动特性计算过程,通过建立轴向扰动下的膜厚方程、雷诺方程及瓦块运动方程,推导出包含激振频率的可倾瓦推力轴承动特性数学模型,计算分析刚度和阻尼随扰动频率(激振频率与主轴转频的比值)、转速及载荷的变化规律;采用脉冲激振法在可倾瓦推力轴承试验台进行动特性试验,得到不同激振频率、转速及载荷条件下刚度、阻尼的试验结果,并和相应的理论计算值进行对比分析。结果表明:当扰动频率较小时,可倾瓦推力轴承刚度随其增加而逐步增大,阻尼随其增加而逐步减小;当扰动频率增加到一定程度后,其刚度和阻尼逐步趋于稳定。此外,转速和载荷对其刚度和阻尼随扰动频率的变化幅度基本无影响。  相似文献   

6.
邹麒  肖曙红  吴利杰 《轴承》2015,(2):48-52
采用FLUENT软件对不同孔径、不同孔数的微小孔阵列式节流空气静压轴承进行了三维CFD仿真,得到了微小孔阵列式节流空气静压轴承的气膜压力分布和气膜刚度等性能数据。结果表明:当节流器阵列小孔个数和直径不变时,气膜承载力与气膜厚度线性正相关;当气膜厚度不变时,节流器阵列小孔个数或直径增加,气膜承载力和轴承的平均承载力均随之增大,轴承刚度最大点对应的气膜厚度也增大;对比传统单孔节流器和微小孔阵列式节流器轴承的气膜压力分布可知,微小孔阵列式轴承的压力稳定性比传统单孔节流轴承有显著提高。  相似文献   

7.
为提升空气静压轴承对动载荷的抵抗能力,针对气膜-被支承件系统的位移阻抗性能进行研究,讨论轴承参数对位移阻抗的影响。首先采用数值仿真并结合动网格技术讨论轴承气膜的刚度、阻尼特性;然后对于气膜-被支承件系统的位移阻抗性能进行研究,基于径向基神经网络模型构建近似模型,讨论激励频率、孔径、气膜厚度、供气压力对位移阻抗的影响特性;最后基于优化设计,在不同给定激励频率下获取使轴承位移阻抗最大的参数组合,并就优化结果进一步对力学性能进行了讨论。研究表明:位移阻抗随频率增加而增加,其余参数对其具有非单调影响;在小气膜厚度下,位移阻抗更大,然而单纯增减供气压不能提升位移阻抗,即不能通过单纯调整供气压提升气膜抵抗动载荷的能力;由于位移阻抗直接反映气膜对动载荷的抵抗能力,因此基于优化设计提升位移阻抗,可以有效增强气膜对动载荷的抵抗能力,进一步提升轴承的动力学性能。相关优化建模流程可为以动力学性能提升为目的的轴承设计提供参考。  相似文献   

8.
建立半球螺旋槽气体动静压轴承润滑分析数学模型;通过建立广义坐标系并进行保角变换简化数学模型,利用广义斜坐标变换划分求解域球面网格,提高数值计算精度;采用有限差分法对控制方程离散,建立控制方程的差分表达式,并采用VC++6.0编程计算三维微气膜稳态气膜厚度和压力分布;通过对微气膜周向和径向压力积分,求得轴承稳态的承载能力;研究动压和静压的耦合效应,分析螺旋槽结构参数、节流孔的数量对轴承承载力的影响规律。结果表明:随着小孔个数的增加,静压效应显著增加,轴承的承载力明显增加;随着螺旋角、槽深比、槽宽比的增大,轴承的承载力均先增大后减小,表明通过轴承优化设计参数可改善气体的润滑特性,提高承载力。  相似文献   

9.
建立小孔节流径向静压空气轴承的计算模型,利用ANSYS CFX软件数值模拟方法计算轴承承载力,并通过实验验证数值计算的准确性;分析节流孔径、节流气腔直径和气腔深度对轴承承载力的影响规律。结果表明:利用CFX计算小孔节流径向静压空气轴承承载力的方法是可行的,可以有效地分析气体在小孔节流结构内的复杂流动;小孔节流结构参数对轴承承载力影响较大,随节流孔径增加,承载力先增大后减小,随节流气腔直径和气腔深度增加,轴承承载力均先增大后基本保持稳定。  相似文献   

10.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

11.
以计入表面微凹坑的动压滑动轴承为研究对象,基于凹坑流量平衡建立了油膜特性数学模型,采用差分法离散求解得到了轴承静、动特性及稳定性参数随微凹坑深度、面积率、形状和排布方式的变化规律,对比了光滑表面的轴承特性计算结果.结果表明,凹坑形状、分布、尺寸等因素显著影响油膜承载力、流量、偏位角、平均温升等静特性参数和刚度、阻尼等动特性参数;其中,最优的微凹坑深度使得油膜承载能力最大提高了15.3%,失稳转速最大提升了6.9%.针对计入表面微凹坑动压轴承的研究具有参考价值.  相似文献   

12.
以小孔节流深浅腔动静压气体轴承为研究对象,采用Fluent软件对轴承的承载特性进行分析,研究偏心率、供气压力、主轴转速、气膜厚度、浅腔深度比等因素对轴承承载力和刚度的影响。结果表明:小孔节流深浅腔动静压气体轴承浅腔区的平均压力大于深腔区的平均压力,压力最大区域出现在浅腔末端靠近轴承端面处;随着供气压力的增加,承载力逐渐增大,但供气压力不应超过0.95 MPa;当主轴转速在3×105 r/min以内时,承载力和刚度随着转速的增加呈线性增长规律,当主轴转速超过3×105 r/min继续增加时,承载力和刚度的增长趋势明显放缓;承载力与刚度随着浅腔深度比的增加先增大后减小,当浅腔深度是气膜厚度的1~1.5倍时,承载力与刚度接近最大值。  相似文献   

13.
为优化动静压气体止推轴承的承载特性,设计一种具有螺旋槽和狭缝节流器结构的动静压气体止推轴承,采用Fluent对轴承静态特性进行仿真分析,通过改变主轴转速、供气压力,研究气膜厚度、螺旋槽宽度、狭缝厚度等参数对轴承静态特性的影响。结果表明:相对狭缝节流止推轴承,增加螺旋槽结构可以提升轴承的动压效应增强,从而提升轴承的承载力和刚度;相同条件下,气膜厚度越大,轴承的承载力和刚度越小;主轴转速和供气压力增加,承载力和刚度均提升明显;螺旋槽宽度增加,轴承的承载力和刚度先增大后减小;狭缝厚度增大,轴承的承载力先增大后不变,刚度先增加后减小;狭缝深度提升,轴承的承载力减小,刚度先增大后减小。  相似文献   

14.
以半球螺旋槽动静压气体轴承为研究对象,建立球面动静压混合气体轴承的非线性动态润滑计算分析数学模型,采用偏导数法推导出扰动压力控制方程;在广义坐标系下,采用有限差分法对扰动压力控制方程离散化,推导出扰动压力的差分表达式;推导出半球螺旋槽动静压气体轴承刚度和阻尼系数与扰动压力之间的关系表达式;采用VC++6.0编制程序,数值计算出三维微气膜的瞬态扰动压力分布、非线性气膜力及动态刚度系数和动态阻尼系数。研究转速、偏心率及供气压力对气膜动态特性系数的影响规律,结果表明:随着转速、偏心率及供气压力的增大,气膜刚度和阻尼系数均有不同程度的变化。  相似文献   

15.
应用可压缩气体动力润滑理论建立了柔性铰链超声挤压膜滑块的动、静特性系数模型,并应用数值方法对模型进行求解,获得了高频激励条件下柔性铰链气体挤压膜滑块的动、静特性系数。讨论了悬浮高度、激励振幅以及激励频率对动特性系数的影响。根据分析发现,这些参数都对挤压膜特性有着显著的影响。悬浮高度越高,挤压膜刚度和阻尼越小。激励振幅越大,挤压膜刚度和阻尼越大。而频率的影响几乎呈线性关系,频率越高,刚度和阻尼越大,挤压膜刚度和阻尼都随着频率的增加而增加,最后对这种结论进行了解释。  相似文献   

16.
针对小孔节流深浅腔动静压轴承的性能优化问题,基于平行平板扩散流动计算模型及流量守恒原理,推导了微元控制体边界压力的插值函数,提出了分析小孔节流深浅腔动静压轴承的油腔压力、承载力、静刚度、进油流量及温升等承载特性的有限体积计算方法。使用该方法研究了供油压力、主轴转速、进油孔径、浅腔深度、初始油膜厚度等参数对小孔节流深浅腔动静压轴承承载特性的影响规律,从而得到了以上相关参数的优化区间。在此基础上,采用四因素三水平的正交试验法,在满足多目标性能最优的前提下,得到了小孔节流深浅腔动静压轴承结构参数与工作参数的最优组合。以该组参数试制了小孔节流深浅腔动静压轴承并建立了试验平台,测量了不同转速及供油压力下油腔的压力值。试验结果表明,轴承油腔压力试验数据及理论计算值随主轴转速的变化趋势一致;误差在11%以内。验证了有限体积法与正交试验法相结合的动静压轴承结构优化设计方法的正确性。  相似文献   

17.
基于摄动法求解周向波度气体密封的动态Reynolds方程,得到动态气膜压力分布。计算周向波度气体密封的气膜动态刚度和阻尼系数,分析扰动频率及密封端面几何参数,如波数、波幅和坝宽比对气膜动态特性系数的影响规律。结果表明:当扰动频率小于转轴角速度时,其对气膜动态特性系数影响不大,反之有较大影响;波数对气膜动态特性系数影响不大,随着波幅的增加主刚度系数和阻尼系数都随之减小,耦合刚度系数则几乎不受影响,随着坝宽比的增加刚度系数基本保持不变,阻尼系数均增加。  相似文献   

18.
针对气浮工作台运行中出现的气膜波动问题,研究空气静压轴承的不同气腔结构形状对气膜内气旋及气膜波动的影响。通过结合承载力和刚度等性能参数,对有限元仿真不同形状气腔的结果对比分析,得到矩形气腔刚度最大,但同时气旋现象严重,圆台气腔能有效抑制气旋现象。这些分析通过改变轴承的结构参数抑制空气静压轴承的气旋及气膜波动,为提高气浮工作台的加工精度和稳定性提供理论依据。  相似文献   

19.
针对气体静压导轨承载力和刚度较低的问题,在导轨的工作面上设计横截面为矩形的直线形均压槽,分别研究均压槽的尺寸、节流孔的尺寸和个数以及供气压力对轴承静态性能的影响;建立轴承气膜的CFD(Computational Fluid Dynamics)模型,通过仿真计算得到轴承的质量流量,利用差膜计算方法得到轴承的承载力和刚度,分析不同结构参数下轴承承载力、刚度和质量流量的变化规律。分析结果表明:增加均压槽可以有效提高气体静压轴承的承载力和刚度,但轴承的耗气量也会增加;随着轴承偏心率的增大,轴承的承载力逐渐增大,轴承的刚度则先增大后减小,轴承的耗气量逐渐减小;均压槽的深度、节流孔的直径和个数以及供气压力对轴承承载性能的影响较大,而均压槽宽度和节流孔高度的影响则较小。  相似文献   

20.
以小孔节流方式的液体动静压球轴承为研究对象,建立球轴承的润滑数学模型,推导出层流状态下的Reynolds方程,引入流量守恒原理并结合小孔节流器的流量计算得到油腔和封油边压力分布;采用微扰法推导出扰动压力控制方程,通过有限差分法和松弛迭代法求解扰动压力控制方程得到轴承的刚度和阻尼系数。运用数值分析研究供油压力、转速及油膜间隙等参数对轴承动态特性系数的影响。结果表明,随着油膜间隙减小,供油压力的增大,刚度和阻尼系数会随之增大;随着转速增大,直接刚度变化趋势较小,直接阻尼降低趋势较明显;当油膜间隙为20μm时,轴承刚度和阻尼系数达到最大;转速的提高对于刚度影响较小,而阻尼系数则会明显降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号