首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
张国庆  陈宝明  刘智  刘芳 《节能》2014,(5):10-13
针对海绵、青砖和石膏3种典型的多孔介质,利用工业X-CT断层图像扫描技术进行处理,获得真实多孔介质几何特征的二维构造多孔介质。采用不可压缩单松弛格子Boltzmann方法进行数值模拟,通过改变通道内多孔介质模型和Re分析了多孔介质复合通道内流体的流动特性,从介观角度研究了多孔介质孔隙结构、孔隙率对复合通道内流场的渗流扰动的影响,为以后研究多孔介质复合腔体内热质交换提供一定参考。  相似文献   

2.
壁面覆盖部分多孔介质方腔自然对流流动的数值模拟   总被引:1,自引:0,他引:1  
多孔介质壁面封闭腔体的自然对流在生产实际中有重要的应用。针对左侧部分多孔介质壁面方形封闭腔体,基于有限元法对封闭腔体的自然对流换热进行了数值模拟,得到了在不同Ra、孔隙率条件下腔体内空气的温度分布、速度分布。结果表明:随着Ra的增大,腔体内的流场及温度场发生了明显的变化,多孔介质壁面孔隙率的变化对腔体的流动换热的影响很小。  相似文献   

3.
为了研究骨架形貌对无机复合相变材料(CPCM)相变储能特性的影响,基于格子玻尔兹曼方法,采用四参数随机生长法(QSGS)构造多孔介质骨架,建立随机分布的多孔介质CPCM相变模型,在此基础上,探究孔隙度(ε)、固相生长核分布概率(P_(c))、方向生长概率(P_(d))、瑞利数(Ra)对CPCM相变储能特性的影响。结果表明,ε越小,CPCM熔化时间越短,ε为0.70时的完全熔化时间相较于ε为0.90时缩短了23.63%。在相同ε(0.90)下,P_(c)增大或P_(d)减小,都有助于提高CPCM的熔化速度。Ra越大,自然对流强度越大,CPCM所需熔化时间越短,Ra为18000时CPCM所需熔化时间相较于Ra为1000时缩短了41.46%。本工作为研究多孔介质无机CPCM储能特性提供理论依据和参考。  相似文献   

4.
为加深对多孔介质发动机中均匀混合气形成的了解,用改进的KIVA-3V详细模拟了空心喷雾油滴碰撞热多孔介质的过程。在KIVA-3V中增加了油滴碰撞热多孔介质壁面的碰撞模型、传热模型及空心喷雾的线性不稳定性液膜破碎(LISA)模型。油滴与热壁的碰撞模型和传热模型经检验证明了其合理性。在简化多孔介质结构的基础上,在不同的环境压力及喷雾锥角下,模拟了空心喷雾与热多孔介质的相互作用。计算结果表明:油雾在碰撞到热多孔介质后,发生分裂的油束和多孔介质区域的高温,促使油滴实现快速蒸发并为油蒸汽与空气充分混合创造了前提。不同的空间压力及喷雾锥角直接影响到油滴在多孔介质中的分布。  相似文献   

5.
利用有限元数值方法对部分填充多孔介质复合腔体内的自然对流进行模拟研究,模拟利用两区域法来计算复合腔体内的自然对流,在多孔介质区域采用Forheimer-Brinkman-Darcy方程,在纯流体区域使用Navier-Stokes方程,重点研究了多孔介质骨架导热特性对自然对流的影响。研究发现,在一定范围内随着多孔介质导热性的增强,流体温度升高,部分填充多孔介质腔体内自然对流有一定程度的增强。  相似文献   

6.
为深入认识多孔介质发动机中均匀混合气的形成,用改进的KIVA-3V详细模拟了伞喷油雾与热多孔介质之间的相互作用.在KIVA-3V中增加了油滴碰撞热多孔介质壁面的碰撞模型、传热模型.为检测数值模型的合理性,在Senda等人的实验条件下进行了数值计算.油束碰壁后油滴和油蒸气分布的数值计算结果与实验结果吻合较好.在简化多孔介质结构的基础上和不同的环境压力及喷雾锥角时,模拟了伞喷油雾与热多孔介质的碰撞过程.计算结果表明,伞喷油雾的喷雾锥角及空间压力对油滴在多孔介质中的分布有着很大的影响,在多孔介质厚度一定时,通过调节这些参数,能够形成均匀混合气.  相似文献   

7.
微型热光电系统多孔介质燃烧器性能的实验研究   总被引:1,自引:0,他引:1  
为保证微型热光电动力系统能稳定、高效地工作,燃烧器壁面需有较高的温度,且分布均匀.对采用多孔介质结构的微型燃烧器进行了实验研究,分析了孔隙率、CH_4/O_2混合比等因素对燃烧器性能的影响.结果表明,采用多孔介质结构可以改善燃烧器内的燃烧传热过程;合理选择孔隙率和工况参数,可以优化燃烧器壁面温度分布,提高系统工作性能.  相似文献   

8.
梯度磁场可用来控制多孔介质内空气的自然对流传热过程.利用局部热非平衡模型对圆形截流线圈水平放置时三维多孔介质方腔内的空气热磁对流进行了数值研究.控制方程基本变量采用控制容积法离散,求解采用SIMPLE算法.计算过程中Ra为103~105,磁场力数γ为0~150、Da为10-7~100.获得了空气热磁对流的流场和温度场....  相似文献   

9.
曹海亮  张凯  张硕果  赵纪娜 《热能动力工程》2012,27(2):207-211,265,266
设计了多孔介质回热徽燃烧器,对微燃烧器内H2/Ak的预混燃烧特性进行了实验研究和数值模拟,实验结果表明,当过量空气系数1.0<α<3.0时,微燃烧器具有较高的燃烧效率,出口烟气温度和较低的燃烧热损失率,且燃烧热功率P越高,α越大,热损失率越小.当P=100 W时,其出口烟气温度最高可达到1 232 K,当α=3.0时,燃烧效率仍达到96.85%,而热损失率仅为14.87%.数值模拟结果表明,由于采用了回热夹层和多孔介质回热结构,有效地回收了热量损失,使得微燃烧器具有良好的热性能.证明设计的多孔介质回热微燃烧器是一种燃烧效率高、热损失率低的微燃烧器.  相似文献   

10.
多孔介质内往复流动下超绝热燃烧的实验研究   总被引:4,自引:0,他引:4  
对RSCP的燃烧特性进行了实验研究.建成了RSCP实验台,它由泡沫陶瓷燃烧器、电磁阀控制的周期换向进排气管路系统和测量系统组成.对各种工况参数(燃料空气当量比、气体流速、循环半周期)下多孔介质内轴向温度分布进行了系统的测量.实验结果表明,较之常规的自由火焰燃烧器,RSCP具有增强火焰稳定性、拓宽燃料可燃极限等优点.对丙烷-丁烷混合气,其贫可燃极限可扩展到当量比0.065.在实验基础上,探讨了RSCP实现超绝热燃烧的机理,总结出有关工况参数对其燃烧特性影响的规律.  相似文献   

11.
12.
基于格子Boltzmann方法的饱和土壤渗流与传热数值模拟   总被引:1,自引:0,他引:1  
本文利用随机多孔介质生成算法重构了与真实土壤外貌相近的多孔介质几何结构。通过引入不可压耦合双分布格子Boltzmann模型(lattice Boltzmann model ,LBM)对孔隙尺度下单相饱和土壤渗流和传热进行了模拟。着重讨论了不同渗流压差、孔隙率、土壤固体颗粒尺寸分布对流动与传热的影响。结果表明:土壤渗流速度与渗流压差呈线性单调递增关系,平均温度随渗流压差增加而增大,但温升速率逐渐减缓;当孔隙率增大时,渗流速度增加,且当孔隙率大于0.58时,对流换热作用迅速增强,土壤温升速率显著加快;对于相同孔隙率,当土壤固相颗粒尺寸较大时,流动出现典型优先流效应;随着土壤固相颗粒尺寸减小,土壤温度变化逐渐趋于平缓,平均温度降低。  相似文献   

13.
In the present work, natural convection in an open-ended square cavity packed with porous medium is simulated. The double-population approach is used to simulate hydrodynamic and thermal fields, and the Taylor series expansion and the least-squares-based lattice Boltzmann method has been implemented to extend the thermal model. The effect of a porous medium is taken into account by introducing the porosity into the equilibrium distribution function and adding a force term to the evolution equation. The Brinkman–Forchheimer equation, which includes the viscous and inertial terms, is applied to predict the heat transfer and fluid dynamics in the non-Darcy regime. The present model is validated with the previous literature. A comprehensive parametric study of natural convective flows is performed for various values of Rayleigh number and porosity. It is found that these two parameters have considerable influence on heat transfer.  相似文献   

14.
The main purpose of this study is to numerically investigate the Prandtl number effect on mixed convection in a horizontal channel heated from below using the thermal lattice Boltzmann method (TLBM). The double-population model with two different lattices is used, in particular, the D2Q9 for the velocity field and D2Q5 for the thermal field. The developed lattice Boltzmann method code to simulate the fluid flow and heat transfer in the channel was validated with available literature results based on classical numerical methods, especially the finite volume method for Pr = 6.4 and the finite difference method for Pr = 0.667. The results obtained with the TLBM have shown good agreement with the conventional methods cited. The dynamic and thermal characteristics of the fluid flow were examined in the field of low Prandtl number, such that 0.05 ≤ Pr ≤ 0.667, and also compared to Pr = 6.4; for Ra = 2420 and 7400, the Reynolds number was fixed at 1. The results showed that the influence is relatively significant for the dynamic structure of flow convection for Pr ≤ 0.3 and is little influential beyond this value.  相似文献   

15.
This study focuses on the cooling of three heated obstacles with different heights mounted on the bottom of the channel wall using different aspects that influence the enhancement of the heat exchange, as is known in the concept of cooling electronic devices. The lattice Boltzmann method associated with multiple relaxation times (LBM-MRT) was adopted to simulate the physical configurations of the studied system. In this context, the D2Q9 and D2Q5 models are applied to describe the fluid flow behavior and conjugate heat transfer, respectively. The evaluation of heat exchange between the cold fluid and three-heated obstacles has been accurately analyzed under the effect of several parameters such as Reynolds number, obstacle spacing, and thermal conductivity ratio. In addition, the setting of two and three fluids flow inlets were also studied. The results are presented in terms of streamlines, isotherms, and local Nusselt curves. The heat transfer increases with increasing solid-fluid thermal conductivity. It is also more pronounced for large Reynolds numbers. Moreover, the heat transfer significantly enhances for the second and third obstacles when obstacle spacing increases. The improvement of the heat transfer is performed by the implementation of several jet flows in the studied system.  相似文献   

16.
The present study addresses the effect of various schemes for applying an external force term on the accuracy and performance of the thermal lattice Boltzmann method (LBM) for simulation of free convection problems. Herein, the forcing schemes of Luo, shifted velocity method, Guo, and exact difference method are applied by considering three velocity discrete models of D2Q4, D2Q5, and D2Q9. The accuracy and performance of these schemes are evaluated with the simulation of three natural convection problems, namely, free convection in a closed cavity, in a square enclosure with a hot obstacle inside, and the Rayleigh-Benard problem. The obtained results based on the present thermal LBM with different forcing schemes and velocity discrete models are compared with the existing experimental and numerical data in the literature. This comparison study indicates that imposing all employed forcing schemes leads to similar performance for the simulation of free convection problems studied at the middle range of Rayleigh numbers. It is found that the Luo forcing scheme is simple for implementation in comparison with the other three forcing schemes and provides the results with acceptable accuracy at moderate Rayleigh numbers. At higher Rayleigh numbers, however, the Guo scheme is not only numerically stable but a more precise forcing scheme in comparison with the other three methods. It is illustrated that employing the discrete velocity model of D2Q4 has more appropriate numerical stability along with less computational cost in comparison with two other discrete velocity models for simulation of natural convection heat transfer.  相似文献   

17.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   

18.
The major scope of this research is to scrutinize the effects of multiple slips on unstable magnetohydrodynamic micropolar fluid past a stretched sheet with a non-Darcy porous medium. In the momentum equation, the non-Darcy porous medium effect is also taken into consideration. The effects of uneven heat source/sink and thermal radiation in the energy equation are also analyzed. By implementing the similarity transmission, the mathematical modeling of the set of managing partial differential equations is reframed into nonlinear ordinary differential equations. These equations are numerically solved by applying Matlab built-in solver bvp5c. The implications of foremost parameters such as micropolar parameter, magnetic parameter, permeability parameter, Prandtl, Eckert, and Schmidt numbers, Chemical reaction, slip parameters on velocity, microrotation, temperature as well as concentration profiles are displayed pictorially and explained. It is worthwhile to mention that the improving values of micropolar parameter K $K$ escalate the velocity as well as microrotation profiles. However, the upsurge in non-Darcy porous medium F s ${F}_{s}$ will cause a declining nature in the velocity profile. Also, an enhancement in the unsteadiness parameter A $A$ brings about a lessening in all the profiles. Increment in all the three usual slip parameters will bring a declining nature in the respective profiles. An increase in Schmidt number will give a deduction nature in velocity as well as concentration profile. Moreover, the physical quantities are defined and Nusselt numbers are formulated in the table, and it enlarges while boosting up P r $Pr$ and R $R$ , whilst a reverse nature is noticed for others. This present study compared with the earlier studies in special cases holds a better agreement.  相似文献   

19.
In this paper, the lattice Boltzmann method is used to study the acoustic waves propagation inside a differentially heated square enclosure filled with air. The waves are generated by a point sound source located at the center of this cavity. The main aim of this simulation is to simulate the interaction between the thermal convection and the propagation of these acoustic waves. The results have been validated with those obtained in the literature and show that the effect of natural convection on the acoustic waves propagation is almost negligible for low Rayleigh numbers (Ra ≤ 104), which begins to appear when the Rayleigh number begins to become important (Ra ≥ 105) and it becomes considerable for large Rayleigh numbers (Ra ≥ 106) where the thermal convection is important.  相似文献   

20.
This study is aimed to investigate the natural convection heat transfer from discrete heat sources (similar to heated microchips) using Bhatnagar‐Gross‐Krook lattice Boltzmann method via graphics process unit computing. The simulation is carried out separately for three and six heated blocks model for different Rayleigh numbers and fixed Prandtl number, P r = 0.71 (air). The uniformly heated blocks are placed at the bottom wall inside a rectangular enclosure. The enclosure is maintained by the cold temperature at its left and right walls. The top and bottom surface is maintained by adiabatic conditions apart from the regions where blocks are attached to the bottom wall. The numerical code is validated with the benchmark heat transfer problem of side‐heated square cavity as well as with an experimental study for one discrete heat source. The rate of heat transfer is presented in terms of the local Nusselt and average Nusselt number for each block. It is found that the heat transfer rate becomes maximized in the leftmost and rightmost blocks due to the adjacent cold walls. It is found that the number of blocks and their positions play a substantial role in determining their collective performance on the heat transfer rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号