首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
蓄热技术可有效解决热能供给与需求在时间和强度上不匹配的矛盾,提高能源利用率。针对蓄热器换热效率低和蓄热器内部温度分布不均匀等问题,结合套管式和多管式蓄热器的换热特性,开发出高效蓄热换热器。研究结果表明,通过添加翅片使相变材料融化过程节省时间66.67%;增加翅片长度能够改善相变材料凝固过程中相变"死区"对整体放热时间的影响,使凝固过程节省时间73%。  相似文献   

2.
《节能》2016,(7)
由于蓄热材料融化后受自然对流的影响,为了改善固液相变蓄热器上下融化不均的情况,采用椭圆管强化蓄热器中的传热,利用Fluent软件模拟了相同面积的圆管和椭圆管这2种结构中石蜡相变的融化过程,得到了石蜡融化过程温度场分布及融化过程中液相分数线的规律,根据这些规律分析了椭圆管对增强蓄能效果的影响,并且分析了不同椭圆管长短半轴比对加快石蜡蓄热时间的影响。  相似文献   

3.
为了探索偏心分形翅片管对相变储热单元性能强化的作用机理,对偏心分形翅片管相变储热单元中石蜡的熔化展开了二维非稳态模拟研究。在考虑自然对流的情况下对比研究了偏心矩形翅片和偏心分形翅片两种储热单元的传热特性。并对偏心分形翅片结构进行了局部强化,选择矩形翅片、Y型翅片和分型翅片3种方案。结果表明,偏心分形翅片结构对自然对流的促进高于偏心矩形翅片结构且整体温度分布更均匀,这与分型翅片可以促进热量由点到面的扩散相符。在3种局部强化方案中,偏心分形翅片强化效果最佳,且整个过程的熔化速率都有提高,使熔化时间缩短了70%。这对管壳式相变蓄热器的性能提升提供了很好的理论指导,进一步扩展了其在储能领域的应用前景。  相似文献   

4.
针对管壳式相变蓄热器换热速率较慢的问题,建立多管束大空间相变蓄热器模型数值模拟的研究换热管排列方式及翅片参数对换热效果的影响。通过观察温度和速度场、固液相界面、Nu及液相分数与时间的关系,分析蓄/放热传热过程。研究结果表明:采用正三角排列可增强换热管间热扰的影响,提高相变材料(phase change material, PCM)熔化速率;蓄热过程中传热以自然对流为主,放热过程中传热以导热为主;合理调整不同位置换热管节距,可改善蓄热器温度分布均匀性;适当增加翅片数量及高度有利于提高PCM换热速率,蓄热器最佳翅片数量为8组,高度为25 mm。  相似文献   

5.
板式石蜡储热器传热的数值模拟   总被引:1,自引:0,他引:1  
在相变储热器中采用强化传热技术,克服相变材料的低导热性能,是目前国内外研究的热点。应用FLUENT软件数值模拟了翅片强化板式石蜡储热器的凝固传热过程,得到随时间变化的相界面位置、总凝固时间、壁面热流、翅片温度分布等,并进一步分析了翅片对不同长宽比叫的储热器的强化传热效果。模拟结果表明,只有当ω≥1时,翅片才能对储热器起到明显的强化传热作用,研究结果可为相变储热器的优化设计提供可靠的依据。  相似文献   

6.
工业余热浪费严重、利用率较低且实际应用过程中受到时间和空间的限制,需要高效蓄热技术和装置来解决此类问题。提出一种将多通道平行流扁管与紧凑式翅片相结合的新型相变蓄热器,以水为载热流体,月桂酸为相变材料。实验研究了载热流体注入方式、流量、入口温度对蓄热器蓄/放热性能的影响,并分析小温差下蓄热器的传热特性。结果显示,该蓄热器相变材料填充率为82.5%,紧凑式翅片的采用极大强化了相变材料侧换热过程,蓄/放热性能优良。当载热流体入口温度分别为45℃和41℃时,相变材料约在270 min和75 min完成相变,最小蓄/放热温差可达2℃,最小温差时的平均蓄热比功率为25.18 W/kg,平均取热比功率为20.23 W/kg。  相似文献   

7.
为了增加同心套管式相变蓄热器的蓄能效果,采用环形肋片强化相变储能设备的传热,利用Fluent软件模拟了这种结构中石蜡相变的融化过程,得到了石蜡熔化过程温度场分布及熔化时间的规律,根据这些规律分析了肋片间距及厚度等参数对贮热管放热效果的影响。分析结果表明:石蜡的总融化时间随肋片间距增加而延长即传热效果变差,但是随着肋片厚度的增加而缩短,即传热效果变优,但是当或肋间距超过40mm和厚度超过2mm后,进一步增加肋片间距或者厚度对传热效果的影响变得不明显。  相似文献   

8.
以填充床式相变蓄热器作为研究对象,将60%NaNO3和40%KNO3混合而成的二元硝酸盐作为传热流体,将59.98%MgCl2、20.42%KCl、19.6%NaCl混合熔盐作为相变材料,建立无需对每个封装颗粒网格离散化的多孔介质局部非热平衡模型。通过数值计算对填充床式相变蓄热器的蓄热性能进行研究,分析了扰流参数以及颗粒结构参数等对蓄热器蓄热性能的影响。为提升蓄热器的蓄热性能,采用非均匀颗粒直径分布,并与等颗粒直径进行比较。结果表明:与填充0.025 m和0.015 m的等颗粒直径相比,蓄热器上端填充0.025 m和下端填充0.015 m的非均匀颗粒直径分布的相变材料完全融化时间分别缩短了3.81%和1.90%。  相似文献   

9.
针对被动式电池冷却方法存在相变材料导热性能差,无法及时释放电池热量的问题,本工作提出内嵌树形翅片强化相变层的传热特性。采用焓-孔隙率法建立了描述树形翅片-相变材料动态熔化传热过程的数学模型,数值分析了具有不同结构翅片相变材料的围护层,在1 C、2 C和3 C放电倍率下对电池温度的影响。与石蜡作为围护层相比,在3 C放电倍率下,石蜡内嵌直翅片可降低电池温度9.7 K;内嵌树形翅片时,相比于内嵌直翅片相变材料围护层电池温度可降低1.4 K。当树杈与树干的长度比为1.2时,内嵌树形翅片相变围护结构应用于电池热管理系统,可以得到较好的传热特性。  相似文献   

10.
高温肋板式蓄热器蓄/放热特性的数值模拟   总被引:1,自引:0,他引:1  
采用计算流体动力学方法对高温不锈钢肋板式相变蓄热器的蓄/放热特性进行了数值模拟。分析了多孔肋片和锯齿肋片对蓄热器蓄/放热特性的影响以及载热体入口温度和流量对相变材料熔化和凝固速度的影响,计算结果表明:在该新型肋板式相变蓄热器中,多孔翅片的性能优于锯齿肋片;随着蓄热器传热温差的增大和载热体流量的增加,蓄热器的蓄/放热性能越好;肋片作为换热元件可以很好的提高蓄热器的蓄/放热性能。所得结论可为高温肋板式蓄热器的优化设计提供有益的参考。  相似文献   

11.
Efficient application of intermittent renewable energy sources, like solar, waste heat recovery, and so forth, depends on a large extent on the thermal energy storage methods. Latent heat energy storage with the use of phase‐change material (PCM) is the most promising one because it stores large energy in the form of latent heat at a constant temperature. The current study investigates melting and solidification of PCM in the triplex tube heat exchanger (TTHX) numerically. The two‐dimensional numerical model has been developed using Ansys Fluent 16.2, which considers the effects of conduction as well as natural convection. To overcome the limitation imposed by the poor thermal conductivity of PCM, use of fins is the better solution. In the current study, longitudinal fins are used for better performance of TTHX, which increases heat‐transfer area between PCM and heat‐transfer fluid. The effects of location of fins, that is, internal, external, and combined internal‐external fins, are observed. All three configurations improve melting as well as solidification process. During the melting process, internal and combined internal‐external fins are equally efficient, in which maximum 59% to 60% reduction in melting time is achieved. For solidification, internal‐external fins combination gives maximum 58% reduction in solidification time.  相似文献   

12.
基于列管式换热器具有传热面积大、结构紧凑、操作弹性大等优点,使其在相变储能领域具有广阔的应用前景。本文建立一种新型列管式相变蓄热器模型,在不考虑自然对流的情况下,利用Fluent软件对相变蓄热器进行二维储热过程的数值模拟。本文主要研究斯蒂芬数、雷诺数、列管排列方式、肋片数以及相变材料的导热系数对熔化过程的影响,并对熔化过程中固液分界面的移动规律进行了分析。模拟结果表明,内肋片强化换热效果明显,特别是对应用低导热系数相变材料[导热系数小于1 W/(m·K)]的列管式蓄热器,相对于无肋片结构,加入肋片(Nfn=2)可缩短熔化时间52.6%。  相似文献   

13.
Latent heat thermal energy storage (LHTES) utilizing heat pipes or fins is investigated experimentally. Photographic observations, melting and solidification rates, and PCM energy storage quantities are reported. Heat pipe effectiveness is defined and used to quantify the relative performance of heat pipe-assisted and fin-assisted configurations to situations involving neither heat pipes nor fins. For the experimental conditions of this study, inclusion of heat pipes increases PCM melting rates by approximately 60%, while the fins are not as effective. During solidification, the heat pipe-assisted configuration transfers approximately twice the energy between a heat transfer fluid and the PCM, relative to both the fin-assisted LHTES and the non-heat pipe, non-fin configurations.  相似文献   

14.
The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat-transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat-transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.  相似文献   

15.
Thermal energy storage is critical for reducing the discrepancy between energy supply and energy demand, as well as for improving the efficiency of solar thermal energy systems. Among the different types of thermal energy storage, phase-change materials (PCM) thermal energy storage has gained significant attention recently because of its high energy density per unit mass/volume at nearly constant temperature. This study experimentally investigates the using of a triplex tube heat exchanger (TTHX) with PCM in the middle tube as the thermal energy storage to power a liquid desiccant air-conditioning system. Four longitudinal fins were welded to each of the inner and middle tubes as a heat transfer enhancement in the TTHX to improve the thermal performance of the thermal energy storage. The average temperature of the PCM during the melting process in the TTHX with and without fins was compared. The PCM temperature gradients in the angular direction were analyzed to study the effect of the natural convection in the melting process of the thermal storage. The energy storage efficiency of the TTHX was determined. Results indicated that there was a considerable enhancement in the melting rate by using fins in the TTHX thermal storage. The PCM melting time is reduced to 86% by increasing of the inlet heat transfer fluid. The average heat storage efficiency calculated from experimental data for all the PCMs is 71.8%, meaning that 28.2% of the heat actually was lost.  相似文献   

16.
介绍了一种新型的蓄能互联热泵系统。利用数值模拟的方法对填充石蜡C17的球型蓄热单元的熔化与凝固过程进行研究,分析了球壁温度、相变单元尺寸和相变材料初始温度三种影响因素对熔化过程和球壁温度对凝固过程的影响。通过对两个过程对比发现相变单元尺寸对相变过程影响最大,在相同温差条件下完全熔化时间少于完全凝固时间,熔化过程中始终存在的石蜡-壁面与液相石蜡-固相石蜡之间的对流换热过程增加了熔化速率。  相似文献   

17.
列管式换热器具有结构牢固、传热面积大、材料使用适应性强等优点,是相变储热领域应用较为广泛的一种换热器。但由于大部分相变材料热导率偏低,导致换热器的换热性能较差,因此提高相变储热器的储热效率,是目前国内外研究的热点。本工作对列管式相变储热单元进行了二维非稳态模拟优化,研究了换热器结构、翅片数目及中心距3种参数对储热性能的影响,并探讨了熔化过程中相变材料的温度和液相率变化趋势。研究结果表明,与圆形换热器结构相比,正方形换热器储热性能更优;相比于无翅片的储热换热器,添加翅片后储热性能得到显著提升,相变材料熔化时间缩短66%;对中心距而言,在一定范围内,随中心距减小进出口降压增大,但储热性能相应提高。  相似文献   

18.
基于焓法模型对水平管壳式相变蓄热装置热性能的增强进行研究,首先分析蓄热过程中传统管壳式装置内材料的传热及流动机理;然后引入椭圆元素并对比椭圆内管及外壳的强化传热效果;最后对热源温度、相变材料导热系数及初始温度对装置热性能的作用规律进行探讨。结果显示,椭圆外壳的强化传热效果优于内管,同等条件下,长短轴之比为2的椭圆外壳可使蓄热时间缩短53.5%。热源温度升高,椭圆外壳的强化传热效果进一步增强,相变材料的导热系数及初始温度对装置热性能的影响较小。  相似文献   

19.
The heat transfer enhancement performance of a phase change buried tubes thermal storage system is influenced by major parameters such as arrangement of heat transfer tubes, fin structure and fin geometry size. We developed a three-dimensional numerical model with two different arrangements and five different enhanced heat transfer structures respectively. For the sake of analysis the effects of arrangement of heat transfer tubes, fin structure and fin geometry size. In addition, we applied the enthalpy-transforming model to obtain the liquid fraction and location of the solid-liquid interface at different time in the phase change process. The numerical results show that the melting time of the thermal storage system model with a triangle arrangement is about 6.1% longer than that of the model with a square arrangement. Besides, the melting time of the model with 55 mm tube pitch is about 16.7% shorter than that of tube pitch with 60 mm. Moreover, the buried tube thermal storage system models with circle fins have the shortest melting time, which is 18 seconds. Melting time of the model with circle fins is about 40% shorter than that of the model with smooth tube. In addition, the melting time of the model with 3 mm fin thickness is 10 seconds, which is the shortest. The model with thicker fins means the shorter time of melting process. Moreover, the melting time of the model with 10.5 mm fin spacing is about 23.5% shorter than that of the model with 12.5 mm fin spacing, which is 13 seconds. In conclusion, the main factor of the melting time is the heat transfer area. It provides a guidance for the design and reconstruction of the type of heat storage structure.  相似文献   

20.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号