首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Wen-Tien Tsai 《Energy》2011,36(7):4333-4339
Utilizing used lubricants as energy sources has been currently demonstrated to be one of the best available waste management methods. In this regard, used lubricants for use as energy sources in Taiwan thus became popular in recent years. The objective of this study was to present a comprehensive analysis of used lubricant-to-energy in Taiwan, which includes status of lubricant consumption, and used lubricant generation and its recycling (i.e., collection & treatment) management system. It was found that a major market for utilizing used lubricants in Taiwan (over 90%) was reused as fuel oils or auxiliary fuels in the cogeneration system. Under the regulatory authorization of the Waste Management Act and the Petroleum Administration Act, the central competent authorities encouraged the energy-intensive industries in the waste-to-energy through the excess electricity purchase and subsidiary incentives. Based on the certified volume of collected used lubricant and its energy use proportion in 2009, the total energy potential and the environmental benefit of mitigating CO2 emissions in place of fuel oils were preliminarily calculated to be around 9.4 × 102 TJ and 7.3 × 107 kg, respectively.  相似文献   

2.
End-use energy analysis in the Malaysian industrial sector   总被引:3,自引:0,他引:3  
The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period.  相似文献   

3.
Following a strategic orientation towards sustainable development, the Government of the Republic of Croatia has changed its energy legislation and has put forward a framework for the systematic development and increased use of renewable energy sources and cogeneration. This paper focuses on changes in the regulatory context relevant to the cogeneration sector and also analyses the impact of energy market transition on cogeneration viability in municipal district heating, industry, services and the residential sector. Particular attention has been paid to the expected changes of heat, electricity and gas prices. We present a simple model for quantitative prediction of the cogeneration system profitability at different power levels under given national circumstances. Our findings support a need for a strong institutional support for initial penetration of the micro-cogeneration technologies into the Croatian energy system.  相似文献   

4.
Using the results of a comprehensive data analysis of final energy consumption in industry and commercial buildings, the assessment has been made of the potential for gradual implementation of cogeneration plants in these facilities. In doing so, plans for the expansion of the natural gas pipeline distribution network in Thailand are taken into consideration. The sample comprises of 2540 factories and 1651 commercial buildings from which it was found that 817 factories and 966 commercial buildings were suitable for the implementation of natural gas-based cogeneration technologies until 2020. By the implementation of cogeneration in these facilities, it is possible to save 3.2% of the total primary energy consumption in Thailand in 2003.  相似文献   

5.
This paper begins by examining the most energy-intensive industries and methods by which fuel efficiency can be improved. Next the author analyses the economics of energy conservation using specific case studies drawn from India. It is shown that investing in energy efficiency is more economical Btu per Btu than investing in the enhancement of domestic energy resources. The author also assesses changes in the economics of conservation for private firms when there are government incentives. Finally government policies that can overcome economic and non-economic disincentives for investing in energy conservation are examined.  相似文献   

6.
本文对美国、中国台湾地区发展电动摩托车的促进政策作了简要介绍,同时提出了一些促进我国电动摩托车发展的建议.  相似文献   

7.
This study deals with this thermo-economic analysis of energy utilization in the industrial sector (IS) towards establishing energy policies. The relations between capital costs and thermodynamic losses for subsectors in the IS are investigated. In the analysis, Turkey is taken as an application country based on its actual data over the period from 1990 to 2003. Energy and exergy analyses are performed for eight industrial modes, namely iron–steel, chemical–petrochemical, petrochemical–feedstock, cement, fertilizer, sugar, non-metal industry, other industry. The energy and exergy utilization efficiency values for the entire Turkish IS are obtained to range from 63.45% to 70.11%, and from 29.72% to 33.23%, respectively. The ratio of thermodynamic loss rate-to-capital cost values is also calculated to vary from 0.76 to 1.01.  相似文献   

8.
The paper highlights the energy dilemma in China’s modernization process. It explores the technological and policy options for the transition to a sustainable energy system in China with Tsinghua University’s Low Carbon Energy Model (LCEM). China has already taken intensive efforts to promote research, development, demonstration and commercialization of sustainable energy technologies over the past five year. The policy actions cover binding energy conservation and environmental pollution control targets, economic incentives for sustainable energy, and public R&D supports. In order to achieve the sustainable energy system transformation eventually, however, China needs to take further actions such as strengthening R&D of radically innovative sustainable energy technologies and systems such as poly-generation, enhancing the domestic manufacturing capacity of sustainable energy technologies and systems, creating stronger economic incentives for research, development, demonstration and commercialization of sustainable energy technologies, and playing a leading role in international technology collaborations.  相似文献   

9.
This study analyzes the impact of the introduction of hydrogen as fuel in the road transportation sector of Korea. Since this sector is completely dependent on petroleum and alternative technologies such as fuel cell vehicles, hydrogen is one alternative fuel that could meet the challenges that Korea is facing due to rising oil prices. This study uses a scenarios-based energy economic model including the hydrogen path way as a sub-energy system to explore the energy system of Korea through 2044. This study also constructs six scenarios consisting of three government policies concerning carbon dioxide reduction and two oil price scenarios in order to assess the impact on hydrogen as fuel in the road transportation sector. The results of this study show that in a particular case (high Btu tax and oil prices) the share of hydrogen would reach 76% of the road transportation sector, and hydrogen would be produced mainly from renewable and nuclear resources via electrolysis facilities. It is also revealed that hydrogen is effective at reducing carbon dioxide, improving energy efficiency and contributing to the energy security of Korea.  相似文献   

10.
11.
Among the various aspects that have to be analysed in a cogeneration and combined cycle plant design, the exhaust gas stack design can represent a critical aspect, in particular when a by-pass stack, which allows the modulation of heat-to-power generation, is present, since it may influence the entire system working condition. To properly take into account the large number of the different requirements which enter in an exhaust gas system design, a multidisciplinary analysis involving numerical integrated approaches can be adopted in order to obtain an optimally designed stack system. In this paper, the design of the exhaust gas system in a cogeneration plant is analysed. The design is performed numerically through a three-dimensional integrated numerical code. Different design solutions are simulated and the results discussed in detail.  相似文献   

12.
On the basis of the energy supply and demand, this paper assesses the environmental damage from air pollution in Iran using the Extern-E study that has extended over 10 years and is still in progress in the European Union (EU) commission. Damage costs were transferred from Western European practice to the conditions of Iran by scaling according to GDP per capital measured in PPP terms.  相似文献   

13.
The combined solid oxide fuel cells and gas turbine (SOFC/GT) system is known to be a potential alternative for distributed power generation. In this paper, a novel SOFC/GT based cogeneration system, which integrated a transcritical carbon dioxide cycle (TRCC) with a LNG cold energy utilization system is proposed. A mathematical (zero-dimensional) model is developed to analyze the co-generation system performance from the perspective of thermodynamic (energy and exergy) and economic costs. The main parameters of the system are chosen to analyze their effects on thermodynamic performance. The results show that the current system can achieve 64.40% thermal efficiency and 62.13% exergy efficiency under given conditions, and can further improve efficiency through parameter optimization. Finally, the multi-objective optimization program using NSGA-II (Non-dominated Sorting Genetic Algorithm II) is used to obtain the optimal value of the system design parameters. In the multi-objective analysis, the thermodynamic efficiency and economic cost of the system are considered as objective functions. The optimization results show that the final optimized design selected from the Pareto front can achieve 63.08% thermal efficiency and 61.10% exergy efficiency, respectively.  相似文献   

14.
A model which simulates residential energy use in New Zealand until the year 2000 has been developed. This paper describes some of the energy conservation possibilities and their effect on energy use for space and water heating. an engineering analysis made to determine the effect of various factors on energy use for space heating is first described. the information gained from many computer simulations is used to develop a quantitative relationship between space heating energy and major determinants—climatic location, building type and intensity of use. Results from an engineering analysis of a water heating unit are used to establish the energy savings due to improved cylinder insulation and lower storage temperature. A solar space and water heating system is analysed to determine the fraction of total heating load that can be met by harnessing solar energy. the analyses demonstrate that the potential of conservation measures to reduce energy use can be substantial—by raising the insulation level on the building and on the water heating cylinder, by lowering the water storage temperature, and by installing an optimized solar heating system, the energy requirement can be reduced to 0·37 times what it is today for a typical uninsulated home.  相似文献   

15.
In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively.  相似文献   

16.
Utilization of Natural gas and Hydrogen to support current and future building energy needs to offset the total electric demand while improving the grid resiliency and energy efficiency was investigated. Demand side energy management will play an important role in efficiently managing the available energy resources. Performance assessment of different power generation and energy management configurations is presented in this paper. Development of solutions in addressing grid resiliency by providing the ability to design suitable configurations for meeting individual building energy needs is discussed. Primary movers (PM) such as internal combustion engines (ICE) and fuel cells (FC) along with small scale auxiliary renewable energy source such as photovoltaics (PV) were considered. Key attributes of total carbon foot-print, life cycle costs including capital and operational expenditure, electric grid offset or peak shaving capability, thermal energy availability and its further potential to offset total electric demand, and primary energy intensity are analyzed and discussed in detail.  相似文献   

17.
Energy system models are often used to assess the potential role of hydrogen and electric powertrains for reducing transport CO2 emissions in the future. In this paper, we review how different energy system models have represented both vehicles and fuel infrastructure in the past and we provide guidelines for their representation in the future. In particular, we identify three key modelling decisions: the degree of car market segmentation, the imposition of market share constraints and the use of lumpy investments to represent infrastructure. We examine each of these decisions in a case study using the UK MARKAL model. While disaggregating the car market principally affects only the transition rate to the optimum mix of technologies, market share constraints can greatly change the optimum mix so should be chosen carefully. In contrast, modelling infrastructure using lumpy investments has little impact on the model results. We identify the development of new methodologies to represent the impact of behavioural change on transport demand as a key challenge for improving energy system models in the future.  相似文献   

18.
The Brazilian aluminium industry, classified as energy-intensive, consume alone about 6% of all power generated by hydro-electric power plants, and therein lies much of the problem: needs lots of energy to produce primary aluminium. The aim of this study is to evaluate the strategy of energy self-generation as a viable alternative of sustainable growth and its importance for the competitive primary aluminium industry in Brazil and outlines key tactics to self-generation adopted for different economic scenarios and conditions in which it would be effective. Also environmental aspects are considered because their impacts in costs and the impact of recycling in the environment through, mainly, reuse o aluminium from cans. Given the instability of energy prices on the open market and supply volatility, self-generation appears as the best alternative for maintaining the sustainability of the primary aluminium industry in Brazil.  相似文献   

19.
The introduction of plug-in hybrid electric vehicles (PHEVs) is expected to have a significant impact on regional power systems and pollutant emissions. This paper analyzes the effects of various penetrations of PHEVs on the marginal fuel dispatch of coal, natural gas and oil, and on pollutant emissions of CO2, NOx, SO2 in the New York Metropolitan Area for two battery charging scenarios in a typical summer and winter day. A model of the AC transmission network of the Northeast Power Coordinating Council (NPCC) region with 693 generators is used to realistically incorporate network constraints into an economic dispatch model. A data-based transportation model of approximately 1 million commuters in NYMA is used to determine battery charging pattern. Results show that for all penetrations of PHEVs network-constrained economic dispatch of generation is significantly more realistic than unconstrained cases. Coal, natural gas and oil units are on the margin in the winter, and only natural gas and oil units are on the margin in the summer. Hourly changes in emissions from transportation and power production are dominated by vehicular activity with significant overall emissions reductions for CO2 and NOx, and a slight increase for SO2. Nighttime regulated charging produces less overall emissions than unregulated charging from when vehicles arrive home for the summer and vice versa for the winter. As PHEVs are poised to link the power and transportation sectors, data-based models combining network constraints and economic dispatch have been shown to improve understanding and facilitate control of this link.  相似文献   

20.
Energy technology transfer can allow countries to move quickly to environmentally sound and sustainable practices. Integration of Renewable Energy Sources (RES) technologies in the energy sector of these countries can play a key role towards sustainability. The level of penetration of RES technologies remains seriously in arrears in Tajikistan, although the country has great RES potential. The aim of the paper is to look deeply into the most appropriate RES technology, which can be gradually introduced in the energy sector of Tajikistan and supported through demonstrations, business workshops, guides for installers with technical details and design proposals. The multi-dimensional methodology adopted included transparent decision support processes, using linguistic variables, taking into consideration the specific conditions prevailing in Tajikistan, as well as policy and technical proposal for the further development of the local market. Based on the results, the emphasis is laid on decentralized heat production, though the promotion of Solar Water Heaters, which seems to be an attractive energy option, with multiple benefits for the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号