首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用电化学法研究了纯镁在未除氧和除氧的下不同厚度薄液膜下的腐蚀行为.结果表明:薄液膜下纯镁腐蚀的阴极过程受氢还原控制;液膜厚度的减小使其阴极过程和阳极过程都受到抑制,对阳极过程影响很大.氧气的存在对阳极过程的影响很大,并使得纯镁表面易于生成表面膜,表面膜更加连续和致密.  相似文献   

2.
利用电化学噪声研究了纯镁在不同厚度薄液膜下的腐蚀行为.结果表明:与本体溶液相比,薄液膜对纯镁腐蚀的阳极过程有使点蚀的孕育速度减缓作用的同时还有使点蚀生长的概率增加的作用;薄液膜下纯镁表面产生的亚稳态点蚀牛长成稳态点蚀的概率比本体溶液下的大.点蚀孕育速度比点蚀生长概率对阳极过程的影响更大;这导致r薄液膜下纯镁腐蚀的阳极过程减缓.  相似文献   

3.
利用Kelvin探针参比电极技术和电化学阻抗方法研究了不锈钢在不同厚度NaCl薄液膜下的腐蚀行为.结果表明:在0.35%NaCl液膜厚度7~90 μm范围内,随着液层厚度的增大,不锈钢在薄液膜下腐蚀的氧扩散控制特征越显著,而且氧还原反应极限电流逐渐降低;3.5%NaCl薄液膜下阻抗测得的溶液电阻随着液膜增厚而首先迅速降低然后趋于平稳;在液层较厚时(425~120 μm)随着液层厚度的减小,腐蚀速度受氧扩散控制逐渐增大;液层厚度减薄至40~120 μm区间,由于阳极反应受抑制和阴极反应加速的共同影响腐蚀速度会出现极小值;液层厚度非常薄(20 μm以下)时由于电流分布不均匀抑制了氧还原,腐蚀速度很低.  相似文献   

4.
利用Kelvin探针参比电极技术和电化学阻抗方法研究了不锈钢在不同厚度NaCI薄液膜下的腐蚀行为.结果表明:在0.35%NaCl液膜厚度7~90μm范围内,随着液层厚度的增大,不锈钢在薄液膜下腐蚀的氧扩散控制特征越显著,而且氧还原反应极限电流逐渐降低;3.5%NaCI薄液膜下阻抗测得的溶液电阻随着液膜增厚而首先迅速降低然后趋于平稳;在液层较厚时(425~120μm)随着液层厚度的减小,腐蚀速度受氧扩散控制逐渐增大;液层厚度减薄至40~120μm区间,由于阳极反应受抑制和阴极反应加速的共同影响腐蚀速度会出现极小值;液层厚度非常薄(20μm以下)时由于电流分布不均匀抑制了氧还原,腐蚀速度很低.  相似文献   

5.
采用自制薄液膜腐蚀试验装置,研究了飞机起落架镀镉AISI 4130钢在低温除冰液(主要成分甲酸钾)薄液膜下的腐蚀电化学行为。结果表明:镀镉4130钢在甲酸钾溶液中的腐蚀过程主要受氧扩散控制,薄液膜下腐蚀产物沉积对腐蚀过程产生较大影响。液膜较厚(≥240μm)时,液膜厚度变化对阴极极限扩散电流密度和溶液电阻影响不大;液膜较薄时,阴极极限扩散电流密度和溶液电阻随液膜厚度减小而增大。在相同液膜厚度下,镀镉4130钢腐蚀电位随溶液浓度增大而降低。在低浓度甲酸钾溶液中,镀镉4130钢腐蚀速率较低,腐蚀电位和腐蚀速率受液膜厚度影响不大。在高浓度甲酸钾溶液中,镀镉4130钢腐蚀电位随液膜厚度减小而正移;薄液膜下腐蚀速率明显高于全浸,且随液膜厚度减小先增大后减小,在液膜厚度约为150μm时出现极大值。  相似文献   

6.
搭建了薄液膜腐蚀试验装置,使用膨体聚四氟乙烯(E-PTFE)防水透气膜准确控制了薄液膜厚度。利用电化学方法研究了质量分数为5%的醋酸钾型除冰液薄液膜厚度对飞机用4130基材钢腐蚀行为的影响。结果表明:该体系腐蚀过程主要受阴极氧扩散控制,薄液膜下腐蚀产物的溶解与扩散过程对腐蚀速率有较大影响;不同液膜厚度下腐蚀体系的阻抗谱均只有一个时间常数,且溶液电阻随液膜厚度增大而减小。当液膜厚度很薄(30μm左右)时,腐蚀速率很低;随液膜变厚,腐蚀速率先缓慢升高,然后迅速上升;在液膜厚度200μm左右达到极值,然后快速下降;当膜厚进一步增大,接近全浸状态,腐蚀速率又逐渐升高,并趋于稳定。  相似文献   

7.
通过阴极极化曲线、交流阻抗谱以及SEM、XPS,原位研究了相对湿度对无电镀镍金印制电路板(PCB-ENIG)在吸附薄液膜下的影响机制。结果表明:PCB-ENIG板在薄液膜下的阴极过程主要包括O_2、腐蚀产物和H_2O的还原过程。阴极电流密度随相对湿度的增加而增加,并且均小于溶液中阴极电流密度,表明扩散过程并不是阴极氧化还原过程的控制步骤。极化电位较负时,75%和85%相对湿度下的阴极极化电流密度逐渐减小。随着腐蚀产物的增加,试验后期腐蚀过程由阳极过程控制。  相似文献   

8.
采用极化曲线、电化学阻抗、电化学噪声以及形貌观测研究了AA6061铝合金在3.5%(质量分数)NaCl薄液膜下的点蚀诱发以及缓蚀剂抑制过程。结果表明:在Na Cl薄液膜下,Ce~(3+)作为阴极性缓蚀剂往往在铝合金表面的第二相组织(如Mg2Si等微阴极相)碱化区发生优先沉积,使铝合金局部腐蚀受到抑制;薄液膜越薄,Ce~(3+)在微阴极区形成的沉积层越致密,进而显著抑制铝合金微阴极相表面的氧还原过程以及亚稳态点蚀的萌生和稳态点蚀发展。相反,在含相同浓度Ce~(3+)的Na Cl溶液中,由于Ce~(3+)的氧化过程受到溶液中氧扩散速率的限制,导致Ce~(3+)在溶液中对亚稳态点蚀的抑制能力相比薄液膜有所下降,即薄液膜下Ce~(3+)的局部腐蚀抑制能力强于本体溶液中的。  相似文献   

9.
深海环境下静水压力对纯镍腐蚀行为的影响   总被引:1,自引:1,他引:0  
采用动电位极化、电化学阻抗和Mort-Schottky等电化学测试方法,研究了在室温、3.5% NaCl溶液条件下,静水压力对纯镍的钝化膜性能的影响.结果表明:随着静水压力的增加,纯镍的腐蚀速度增大,阴极过程保持不变,阳极过程加速.静水压力对阳极过程的影响:一方面提高纯镍钝化膜的抗腐蚀能力,使钝化膜中的受主密度减小,空间电荷层的厚度增加;另一方面,恶化了纯镍的钝化膜腐蚀抗腐蚀能力,使钝化膜变得不稳定,并且表现出较高的化学溶解速度和空穴扩散系数.静水压力对纯镍钝化膜的恶化作用比提高作用对阳极过程的影响更大,导致纯镍的抗腐蚀能力随着静水压力的提高而减小.  相似文献   

10.
利用薄液膜实验装置,采用阴极极化曲线、电化学阻抗谱研究了外加直流电场对金属Zn在薄液膜下的腐蚀行为影响。结果表明,外电场使阴极极化曲线中氧还原峰峰电位负移,峰电流增加,电极过程的荷移电阻降低;外电场作用下,使得液膜中存在电场,促进了溶解氧水合基团的传质过程,使氧的还原过程增强。同时外电场的存在使得电极/液膜界面的电荷密度增加,使电极电位负移,促进了阴极还原过程的进行。  相似文献   

11.
采用阴极极化曲线、开路电位和电化学阻抗谱,监测青铜在不同薄液膜厚度下的大气腐蚀行为。阴极极化曲线结果表明,阴极极限电流密度随着液膜的减薄而增大。电化学阻抗谱结果表明,在腐蚀初期,腐蚀速率随着液膜的减薄而增加,这主要是由于腐蚀速率是由阴极过程控制的;随着时间的延长,腐蚀程度随着液膜厚度的变化从强到弱的趋势为:150μm,310μm,100μm,本体溶液,57μm。开路电位和电化学阻抗谱实验较好地再现了原位电化学腐蚀信息,且电化学结果与物理表征具有良好的一致性。  相似文献   

12.
通过多因素正交试验模拟了湿热海洋环境下受盐雾影响的金属大气腐蚀过程,研究了稳态环境条件下表面覆盖薄液膜的Cu腐蚀机理。根据温度、湿度等环境条件计算了液膜的状态变化,分析了不同厚度与Cl-浓度的薄液膜下溶解氧的迁移过程,最终通过对比试验与理论计算结果,揭示了环境因素对薄液膜尺寸、浓度等状态与腐蚀传质动力学过程的影响关系。  相似文献   

13.
采用电化学阻抗法和阴极极化曲线法研究了X70钢在0.20mol/L Na2SO4薄层液膜下的电化学行为。结果表明,液膜厚度减薄,X70钢的极限扩散电流增大,液膜厚度约为50μm时,阴极极限扩散电流达到最大值。液膜厚度约为40~50μm时,阴极极限扩散电流反而降低。液膜厚度进一步减薄,阴极极限扩散电流又增大。在薄层液膜下,随着液膜厚度的减薄,X70钢的腐蚀过程发生变化。液膜厚度减至45μm以下时,X70钢的腐蚀速率控制步骤转变为物质扩散和电荷传递过程的混合控制,腐蚀速率先增大后降低。随着浸泡时间的延长,液膜厚度为100μm的腐蚀速率先增大后减小再增大,200μm的趋于稳定,400μm的和空白溶液中先减小后增大。  相似文献   

14.
金属在薄层液膜下电化学腐蚀电池的设计   总被引:8,自引:2,他引:8  
设计了用于研究金属材料在薄层液膜下腐蚀行为的参比电极后置式三电极电化学测量电池,并用此研究了铜在薄层液膜下的阳极极化行为,用双电极电解池研究了铜在薄层液膜下的交流阻抗行为。结果表明:薄层液膜(0.5mol/LHCl 0.25mol/LNa2SO4电解质)厚度的减小,影响了Cu腐蚀的阳极过程,使Cu的阳极溶解由Tafel区转向极限扩散电流区,腐蚀机制发生了变化,增大了Cu的自腐蚀电位。  相似文献   

15.
利用电沉积法在低碳钢表面上构建了多孔微纳结构并灌注润滑剂制备出一种稳定的固态超滑表面(SSS)。采用电化学测试,扫描电镜(SEM)和X射线衍射仪(XRD)等手段研究不同液膜厚度(500,250,100和50μm)下SSS腐蚀防护行为及腐蚀后的微观结构变化规律。结果表明:在薄液膜腐蚀初期,随着薄液膜厚度的降低,SSS的腐蚀行为呈现较小差异,在100μm厚度时SSS具有最大的阻抗,浸泡1 d后极限扩散电流密度为4.899×10-6 A·cm-2 (在-1.4 V电位下),拟合后的阻抗值达到1.54×105Ω·cm2;即使浸泡7 d后仍具有6.98×104Ω·cm2的阻抗值,并难以检测到腐蚀产物的生成,表现出优异的稳定性和耐蚀性。  相似文献   

16.
通过阳极极化曲线、Mott—Schottky分析等手段研究铸态纯镁和微晶化纯镁的腐蚀行为.结果表明,微晶化对纯镁的腐蚀行为有着明显地影响.与铸态纯镁相比,微晶化改变了纯镁钝化膜的成长机制,降低钝化膜内的载流子密度和扩散系数,显著地提高钝化膜的耐蚀能力.  相似文献   

17.
以中性1.0 mass%NaCl溶液为研究体系,通过电化学阻抗(EIS)结合形貌分析研究了纯镁的腐蚀发展过程及其腐蚀机理.结果表明:该腐蚀过程可被分为典型的三个阶段,分别为腐蚀初期点蚀的产生与发展、氧化膜在阳极表面的堆积以及腐蚀后期氧化膜的破裂造成新的阳极区域的出现;随着腐蚀程度的逐渐深入,电极表面的粗糙度在不同阶段也有相应的增加;腐蚀过程中EIS分形维数的变化趋势与腐蚀形貌之间有良好的对应关系.  相似文献   

18.
采用交流阻抗法和阴极极化曲线法研究了X70钢在0.1 mol/L(NH4)2SO4薄层液膜下的电化学行为.结果表明: 液膜厚度减薄,X70钢腐蚀电位正移,阴极极限扩散电流增大.液膜厚度约为70μm时,阴极极限扩散电流达最大值;液膜厚度为70μm~59μm时,阴极极限扩散电流反而降低;厚度进一步减薄,阴极极限扩散电流又增大.在薄层液膜下,随着液膜减薄,X70钢的腐蚀过程发生变化;液膜减至60μm以下时,低频出现扩散特征的Warburg阻抗,其腐蚀的控制步骤转变为物质扩散和电荷传递过程混合控制.X70钢的腐蚀速率随液膜减薄先增大后降低.  相似文献   

19.
目的 研究纯铜在含氯液膜和霉菌共同作用下的腐蚀行为与机理。方法 将海南文昌采集的一株野生杂色曲霉接种到质量分数分别为0.9%和3.5%的NaCl溶液中制成孢子悬浮液,将孢子悬浮液均匀喷洒到铜试样表面后进行恒温恒湿试验,试验不同周期后采用体视学显微镜、扫描电子显微镜观察铜试样的腐蚀形貌,采用X射线光电子能谱仪分析试验14 d的试样表面和氩离子刻蚀15 s后的成分。结果 纯铜在NaCl薄液膜下的腐蚀产物具有明显的双层结构,内层靠近基体的为致密的Cu2O钝化层,外层为疏松的Cu2(OH)2CO3和Cu2(OH)3Cl组成的Cu(II)碱式盐;无菌时,铜表面出现大量蓝绿色的Cu(II)碱式盐,杂色曲霉存在时,铜表面腐蚀产物主要为红棕色的Cu2O钝化膜,仅有少量Cu(II)碱式盐零星分布在Cu2O膜外层;0.9% NaCl薄液膜与霉菌共同作用时,试样表面腐蚀产物主要为Cu2O,当薄液膜中盐的质量分数升高到3.5%时,霉菌数量减少,Cu(II)碱式盐较0.9% NaCl薄液膜组增多。结论 纯铜的腐蚀产物由内层的Cu2O钝化层、外层的Cu2(OH)2CO3和Cu2(OH)3Cl组成双层结构。杂色曲霉通过呼吸作用影响液膜中的O2浓度进而影响铜的腐蚀产物组成,霉菌存在时腐蚀产物中Cu(II)碱式盐显著减少。含氯液膜与霉菌共同作用时,液膜中的NaCl浓度通过影响杂色曲霉的生长活性而影响腐蚀产物组成。  相似文献   

20.
采用化学失重法、电化学方法和原子吸收光谱法研究了紫铜、Cu-Zn-Al形状记忆合金和Cu-Zn-Al合金在模拟宫腔液中的腐蚀行为.结果表明, 模拟宫腔液中紫铜、Cu-Zn-Al形状记忆合金和Cu-Zn-Al合金的腐蚀历程受阴极氧去极化步骤控制.Cu-Zn-Al形状记忆合金和Cu-Zn-Al合金由于铝的表面离子化倾向比锌的大, 优先形成致密坚固的保护性氧化铝膜, 降低了腐蚀速率.在模拟宫腔液中发现Cu-Zn-Al形状记忆合金和Cu-Zn-Al合金发生脱铝腐蚀, Cl-参与腐蚀反应历程, 促进脱铝腐蚀的进行.白蛋白与氧的竞争吸附加速了阳极溶解, 使紫铜、Cu-Zn-Al形状记忆合金和Cu-Zn-Al合金的阳极活性电流密度随白蛋白浓度的上升而增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号