首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a field experiment on a sandplain soil in a low rainfall (326mm per annum) Mediterranean environment of south-western Australia, seven levels of single superphosphate, 0, 7.5, 10, 14, 19.5, 30 and 39 kg P ha–1, were placed at either 3, 5, 7, 9, 11 or 13 cm depth before sowing wheat (Triticum aestivum) at 3 cm. In a separate treatment, superphosphate was drilled with the seed (the normal practice). In the second year, the plots were sown with lupins (Lupinus angustifolius) at 3 cm depth with no additional superphosphate. In three separate treatments, superphosphate at 0, 14 and 39 kg P ha–1, was drilled with the lupin seed (the normal practice) on plots that had received no superphosphate in the first year. Yields of wheat and lupins were used as a measure of the effectiveness of the superphosphate placement treatments relative to the effectiveness of superphosphate drilled with seed of wheat (year 1) or lupins (year 2), to give relative effectiveness (RE) values in each of the two years.In the first year the RE of superphosphate was increased by about 20% when the fertilizer was placed 5 to 9 cm deep in the soil. In the second year, the RE of superphosphate for producing lupin grain was increased by about 30–60% where the fertilizer had been placed 5–13 cm deep in the previous year compared with freshly drilled 3 cm deep. The yield of wheat or lupins was closely related to the P content of plant tissue; each relationship was independent of the depth or year of superphosphate application.  相似文献   

2.
Pasture production, phosphorus (P) concentration, and P uptake by mixed pasture following addition in the autumn of 50 and 100 kgP ha–1 as single superphosphate (SSP), triple superphosphate (TSP) and Sechura phosphate rock (SPR), and of 50 kgP ha–1 of Chatham Rise phosphorite (CRP) were measured for one year on a Wainui silt loam (Typic Dystrochrept) and Tokomaru silt loam (Typic Fragiaqualf). A sharp increase was measured in the P concentration of mixed pasture immediately following the application of 50 and 100 kg P ha–1 as either SSP or TSP at both sites. However, this increase was not accompanied by an increase in pasture production. In contrast, the application of 50 kgP ha–1 as either SPR or CRP resulted in only small initial increases in the P concentration of mixed pasture, as did the addition of 100 kgP ha–1 as SPR at both sites. The potential P losses by animal transfer in dung, which could result from the use of these four P fertilisers, were calculated using a P cycle constructed for intensively grazed, steep hill country pasture. Potential losses of fertilizer P, calculated as a percentage of fertilizer P added, were 7–14% for SSP and TSP, and 4–5% for SPR and CRP in the first year at the two sites. The implications of these results to the efficiency of P fertilizer use are discussed.  相似文献   

3.
At two phosphate (P) responsive sites in hill country the effectiveness of Sechura phosphate rock (SPR) as a direct application P fertilizer for permanent pasture was evaluated. Sechura was applied at two rates, in three different application strategies. The treatments were 16.7 and 50 kgP ha–1 annually, 25 and 75 kgP ha–1 biennially, and 50 and 150 kgP ha–1 triennially giving a total of 50 and 150 kgP ha–1, respectively, over three years. Single superphosphate (SSP) served as the standard P fertilizer. A comparison was also made between SPR and Chatham Rise phosphorite (CRP), another reactive PR. Total pasture and legume production and P uptake by pasture was measured with all fertilizer treatments over a three year period.In the year of application, SPR was as effective as SSP in stimulating total pasture and legume production and P uptake by pasture. This reflects the very reactive nature of this PR. In the second and third years of measurement, SPR did not show superior residual efffects to SSP. The ability of CRP to stimulate legume growth more than SPR in the second year following application demonstrates the danger of generalizing about the residual effects of reactive PR materials. Of the application strategies evaluated, a biennial appplication of 25 kgP ha–1 as SPR maintained legume growth at a higher level than a smaller (16.7 kgP ha–1) annual dressing. The biennial strategy also increased total pasture yield, in addition to legume production to a greater extent in the second and third years than a single (50 kgP ha–1) triennial application.  相似文献   

4.
Mineral fertilizer use is increasing in West Africa though little information is available on yield response in farmers' fields. Farmers in this region plant at low density (average 5,000 pockets ha–1, 3 plants pocket–1), which can affect fertilizer use efficiency. A study was conducted with 20 farmers in Niger to assess the response of pearl millet [Pennisetum glaucum (L.) R. Br.] to phosphorus and nitrogen fertilizers under farm conditions. In each field, treatments included control, single superphosphate (SSP) only, SSP plus N (point placed near plant), and either SSP or partially acidulated phosphate rock (PAPR) plus N broadcast. N and P were applied at 30 kg N ha–1 and 30 kg P2O5 ha–1. Farmers were allowed to plant, weed, etc., as they wished and they planted at densities ranging from 2,000 to 12,000 pockets ha–1. In the absence of fertilizer, increasing density from 2,000 to 7,000 pockets ha–1 increased yield by 400%. A strong interaction was found between fertilizer use and density. Farmers planting at densities less than 3,500 pockets ha–1 had average yields of 317 kg grain ha–1 while those planting at densities higher than 6,500 pockets ha–1 showed average yields of 977 grain ha–1. Though phosphate alone increased yields significantly at all densities, little response to fertilizer N was found at densities below 6,000 pockets ha–1. Significant residual responses in 1987 and 1988 were found to P applied in high-density plots in 1986. Depending on fertilizer and grain prices, analysis showed that fertilizer use must be be combined with high plant density (10,000 pockets ha–1) or no economic benefit from fertilizer use will be realized.  相似文献   

5.
Sixteen experiments were carried out on maincrop potatoes (Solanum tuberosum) in the main growing areas of the United Kingdom to compare broadcast, sideband placed and split applications of compound fertilizer. In experiments without irrigation, yield increased up to about 1250 kg ha–1 of compound fertilizer (N:P:K 15:6.6:15.8 or 15:8.3:15.8), while with full irrigation there was a response to at least 1875 kg ha–1. Placement gave a higher yield than broadcast at 625 kg ha–1, while at 1250 kg ha–1 and 1875 kg ha–1 broadcast, placed and split applications gave similar yields.  相似文献   

6.
Field studies were conducted for three years (1987–1989) at two locations to evaluate 4 commercial triple superphosphate (TSP) fertilizers containing various levels of water-soluble P. The fertilizers had been produced from phosphate rock deposits located in Florida, North Carolina and Morocco. AOAC available P was 81 to 94% water-soluble. Water-soluble P was inversely related to the level of Fe and Al in the fertilizers. Phosphorus from each source was applied to a Malbis soil (Plinthic Paleudults) and a Hartsells soil (Typic Hapludults) at rates of 0, 25, 49 and 99 kg ha–1. Potato (Solanum tuberosum L.) yields were increased by the application of P, except for the Malbis soil in 1988. Yields were not affected by the source of added P on either soil during the three years of the study. Fertilizer performance was not affected by the level of water-soluble P or the content of Fe and Al when band applied to potatoes under field conditions in the Southeastern United States.  相似文献   

7.
Low soil fertility and pest pressure are two causes of the decline in banana (Musa AAA) production in central Uganda. Foliar analysis by the Diagnosis and Recommendation Integrated System (DRIS) pinpoints K and Mg as the most limiting nutrients. This study tested the effects of K and Mg additions on plant performance and weevil damage for 2.75 yr, at Buligwe in central Uganda and Muyogo in southwest Uganda. All treatments received 25 kg P ha–1 and 100 kg N ha–1 annually, while K and Mg were applied (kg ha–1) at 0 K–0 Mg, 100 K–0 Mg, 100 K–25 Mg and 100 K–50 Mg. Fresh fruit yields (Mg ha–1 yr–1) ranged from 3.2 to 5.0 at Buligwe and 14.4 to 18.9 at Muyogo, with similar treatment trends at both sites. The 100 K–0 Mg treatment produced higher yields than no-K control (p = 0.022 for the combined dataset). Yields with K+Mg tended to be lower than with K only, though not significantly different. Foliar nutrient concentrations were little affected by treatments, but varied substantially among sample dates. With increasing cumulative rainfall between foliar samplings, foliar P declined (p = 0.077), K declined (ns), and Ca and Mg increased (p = 0.02 to 0.03). Weevil damage was higher at Buligwe, but was little affected by K and Mg treatments at either site.  相似文献   

8.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

9.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

10.
Two field experiments were conducted in 1988 and 1989 on an acid sandy soil in Niger, West Africa, to assess the effect of phosphorus (P), nitrogen (N) and micronutrient (MN) application on growth and symbiotic N2-fixation of groundnut (Arachis hypogaea L.). Phosphorus fertilizer (16 kg P ha–1) did not affect pod yields. Addition of MN fertilizer (100 kg Fetrilon Combi 1 ha–1; P + MN) containing 0.1% molybdenum (Mo) increased pod yield by 37–86%. Nitrogen concentration in shoots at mid pod filling (72 days after planting) were higher in P + MN than in P – MN fertilizer treatment. Total N uptake increased from 53 (only P) to 108 kg N ha–1 by additional MN application. Seed pelleting (P + MoSP) with 100 g Mo ha–1 (MoO3) increased nitrogenase activity (NA) by a factor of 2–4 compared to P treatment only. The increase in NA was mainly due to increase in nodule dry weight and to a lesser extent to increase in specific nitrogenase activity (SNA) per unit nodule dry weight. The higher NA of the P + MoSP treatment was associated with a higher total N uptake (55%) and pod yield (24%). Compared to P + MoSP or P + MN treatments application of N by mineral fertilizer (60 kg N ha–1) or farmyard manure (130 kg N ha–1) increased only yield of shoot dry matter but not pod dry matter. Plants supplied with N decreased soil water content more and were less drought tolerant than plants supplied with Mo. The data suggest that on the acid sandy soils in Niger N deficiency was a major constraint for groundnut production, and Mo availability in soils was insufficient to meet the Mo requirement for symbiotic N2-fixation of groundnut.  相似文献   

11.
Intercropping perennials with corn has the potential to improve utilization of the growing season over monocropping corn in regions where a substantial portion of the growing season is too cool for corn growth. The biomass potential and fertilizer N requirements of monocropped corn (Zea mays) grown using conventional tillage were compared with those of corn intercropped with alfalfa (Medicago sativa) in 1987 and 1988. The intercropped alfalfa was harvested once prior to planting the corn each spring. Rotation effects on and N fertilizer requirements for monocropped corn following these treatments and also following monocropped alfalfa, were evaluated in 1989 and 1990. During the two years of intercropping for which data is presented, the critical intercropped corn biomass (13.05 Mg ha–1) estimated using a quadratic-plus plateau model, was close to the monocropped corn biomass (13.01 Mg ha–1), but an estimated 83 kg ha–1 more N was required for intercropped corn to reach the critical biomass. Total biomass (intercropped corn and alfalfa) was 25% greater than that of the monocropped corn, and the total N uptake was 55% greater than that by monocropped corn over the two- year period. After rotation to monocropped corn using conventional tillage in 1989, corn biomass averaged over N rates following intercropping or monocropped corn was lower (P=0.01) than following monocropped alfalfa. Critical corn biomass estimated was highest following alfalfa and lowest following monocropped corn, and more N fertilizer was required to attain the critical biomass under continuous monocropped corn in 1989. Corn yields and N uptake values in 1990 were not significantly different among the cropping systems. The N fertilizer replacement values due to intercropping decreased from above 90 kg N ha–1 in the first year of rotation to less than 40 kg N ha–1 in the second year of rotation. Considering the higher potential for total biomass production and rotation benefit, intercropping is a viable alternative to conventional corn monoculture for forage production.  相似文献   

12.
TheAzolla pinnata (Vietnam) inoculated in rice field 10 days after transplanting (DAT) at a rate of 500 kg ha–1 fresh biomass along with phosphorus fertilizer application produced a mat on the water surface at 30 DAT. The three split application of phosphorus as 4.4, 2.2 and 2.2 kg P ha–1 applied at 10, 15 and 20 DAT, respectively produced 67% more biomass and 57% more Nitrogen inAzolla than those obtained by applying 8.8 kg P ha–1 at 10 DAT. Whereas, the two splits of phosphorus as 6.6 and 2.2 kg and 4.4 and 4.4 kg P ha–1 applied 10 and 15 DAT, respectively produced 20 and 33% more biomass and 14 and 27% more Nitrogen only.The three split application of phosphorus also increased the grain and straw yields, panicle number and weight, nitrogen concentration and its uptake in rice significantly over application of the entire amount once only. An increase of 10% grain yield and 13% straw yields was observed when 8.8 kg P ha–1 was applied in three splits rather than applied at one time. On the average an increase of 24% grain and 23% straw yields in rice were observed due toAzolla intercropping and 22% and 16%, respectively due to phosphorus application. The intercropping ofAzolla with rice along with phosphorus application also increased the fertility level of soil by increasing the total nitrogen, organic carbon and available phosphorus of soil.  相似文献   

13.
Banding increases effectiveness of fertilizer P for alfalfa production   总被引:1,自引:0,他引:1  
A field experiment was conducted from 1992 to 1996 on an existing alfalfa (Medicago sativa Leyss) stand located on a P-deficient Black Chernozem (Typic Boroll) soil at Ponoka, Alberta, to compare the effectiveness of broadcasting (spread over the soil surface) versus banding (1.5 cm wide band placed 5 cm deep and 15 cm apart, using a coulter-type disc drill) of annual and one-time applications of P fertilizer on dry matter yield (DMY), P-use efficiency of applied P (PUE), protein yield (PY), recovery of fertilizer P (PR), net returns (NR) and non-renewable energy performance of alfalfa hay. There was a marked increase in DMY and PY from all the P application treatments in all the five years. Banding produced greater increase in DMY and PY than broadcasting, with both the annual (by 954 kg DMY ha–1 and 205 kg PY ha–1) and one-time application (by 742 kg DMY ha–1 and 173 kg PY ha–1) applications. The PUE (averaged across P rates and years) was greater with banding as compared to broadcasting by 58 kg DMY kg–1 P ha–1 for annual applications, and by 47 kg DMY kg–1 P ha–1 for one-time applications. In the same order, PR values were 16.0 and 12.1% greater with banding than broadcasting. Despite the higher costs of banding than broadcasting, net returns were significantly higher with banding in nearly all years. The differences between banding and broadcasting were generally greater at lower than at higher P rates. Based on the 5-year means, annual and one-time P applications produced similar increase in DMY, PY, PUE, PR and NR. In contrast, non-renewable energy inputs were higher for banding than broadcasting, but energy use efficiency was similar for both methods of application. In conclusion, method of P placement had the greatest effect on DMY, PY, PUE, PR, NR and energy performance, whereas annual and one-time applications showed similar results. The results suggest that alfalfa forage productivity and profitability can be improved by banding the P fertilizer with a coulter type disc in comparison to the conventional application method of broadcasting.  相似文献   

14.
The effect of annual banding of superphosphate (0–45 kg P ha−1) on soil phosphorus (P) content, growth, and yield of wheat was investigated from 1982 to 1998 in a major rainfed wheat production area of South Africa. Conventional tillage practices in a wheat monoculture cropping system were followed under summer rainfall conditions. The responses of wheat growth to fertilizer P application were evident during early and late tillering growth stages, with decreased responses towards maturity. Although average yields varied between cropping seasons (0.881 to 3.261 t ha−1) due to climatic conditions, significant exponential response patterns between yield and fertilizer P applications existed. Optimum yields were achieved with P applications of 10 to 15 kg P ha−1. The recovery of fertilizer P in the grain decreased with increasing P applications. Results of soil P analyses and calculated P balance indicated a more rapid increase in soil P content with application of fertilizer P at levels above 20 kg P ha−1, with gradual increases occurring at lower levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Experiments were conducted on sandy loam soils of Tirupati campus of Andhra Pradesh Agricultural University for two rainy seaons of 1980 and 1981 to study the effect of split application of NPK fertilizers on Spanish bunch groundnut. The fertilizer doses were 40 N, 20 P and 40 K kg ha–1 in 1980 and 30 N, 10 P and 25 K kg ha–1 in 1981.In 1980, uptake of N (48 kg ha–1), P (7 kg ha–1) and K (37 kg ha–1) was maximum with the application of 10 N, 5 P and entire 40 K kg ha–1 as basal and 30 N and 15 P kg ha–1 at 30 days after sowing, leading to highest pod yield (0.76 t ha–1). In 1981, application of 20 N, 10 P and 25 K kg ha–1 as basal dose and 20 N kg ha–1 at 30 days after seeding resulted in highest uptake of N (114 kg ha–1), P (17 kg ha–1) and K (58 kg ha–1) and hence the pod yield (2.36 t ha–1).Differences in the uptake of NPK and pod yield in 1980 and 1981 was due to variation in total rainfall and its distribution during the crop period. Rainfall was equally distributed throughout the crop period in 1981, whereas there were two prolonged dry spells of more than 40 days in 1980.  相似文献   

16.
Two trials inPinus radiata growing on different sites in N.S.W. allowed consideration of fertilizer applications after 2nd or 3rd thinning. The trials included factorial applications of N and P at a single thinning intensity plus a further treatment which allowed assessment of different thinning intensities. The most significant growth responses were obtained by application of N and P in combination. The largest response (additional productivity compared with the unfertilized control) occurred 4 years after application and after 7 years there was no additional absolute response for either of the two sites. The largest fertilizer response was 70 m3 ha–1 over 7 years on one site and 36 m3 ha–1 on the other, indicating differences in absolute responses between sites. It was concluded that in planning treatments the most responsive sites near the end of the rotation should be selected to maximise economic returns. Foliage analyses indicated differences between sites at the commencement of the study. It was concluded that either a single year of foliage analyses at study commencement is of value, or sampling every year of the study should be used to analyse responses, but a single year of analysis during or at the end of the study would not be of value.  相似文献   

17.
No extensive investigation on the effect of fertilizers on Amazon cocoa variety (Theobroma cacao L.) has been performed in Nigeria. Therefore eight fertilizer treatments involving nitrogen and phosphorus, replicated six times at four locations across southern Nigeria, were established in 1973. The four N levels (N0, N1, N2, N3) involved were 0, 80, 160 and 240 kg ha–1 y–1, and the two P levels (P0, P1) were 0 and 67 kg ha–1 y–1. Results of the first 5 years of fertilizer application are reported. Response to P was observed at all locations, and the response was statistically significant at 2 of the locations. There was no response to the application of nitrogen. The data suggest, however, that there is only a response to phosphorus when nitrogen is applied.  相似文献   

18.
The sustainability of cropping systems is closely related to the judicious use of fertilizers. Little research has been conducted on the management of P in rotations in Morocco. The purpose of this study was to determine the effects of direct, cumulative, and residual P on wheat (Triticum aestivum) and chickpea (Cicer arietinum L.) yields under field conditions in two cropping systems: continuous wheat (W-W) and chickpea-wheat (CP-W). Experiments were conducted in 1994–96 at two locations in the arid and semiarid regions of Morocco. Phosphorus was applied the first year at rates of 0, 9, 18, and 27 kg P ha–1 on both wheat and chickpea. The second year, plots were split into treatments with P and without P fertilizer. The changes in NaHCO3-P in soil showed that after two years of cropping, P rates of 9 and 18 kg P ha–1 were needed to increase and maintain soil test P level in the range where a third successive crop could be grown without fertilization at locations 1 and 2, respectively. Also, soils with the same initial NaHCO3-P soil test levels required different amounts of fertilizer P to produce maximum yields. Inclusion of chickpea in the rotation resulted in a greater response to residual P by wheat at location 2. Differences in wheat grain yield between rotations were not significant. The maximum increase in yields above the nil-P treatment due to the highest amount applied in the the previous year was 1.3 t ha–1, obtained for continuous wheat at location 2. Though the residual P effect was evident in this study, it did not produce maximum yields. Yields (GY, DM) could be predicted by the inclusion of both P applied in previous year (PR) and P applied in the current year (CP) by the following model: GY or DM = a + b*Ln(RP+1) + c*Ln(CP+1). Based on the range of P rates used in this study, a single P application for a 2-year rotation is not a suitable practice in these soils. The application of 18 kg P ha–1 each year is recommended for continuous wheat, and 9 kg P ha–1 the first year plus 18 kg P ha–1 the second year is recommended for chickpea-wheat rotations. We suggest that either using single large applications of P or performing repeated applications should take into account the range of targeted application rates.  相似文献   

19.
The quantities of nitrogen, phosphorus and potassium supplied by an average African soil cleared from bush fallow, assuming no losses, were approximated. Values ranged from 23 to 120 Kg N ha–1, 1.8 to 12 Kg P ha–1, 47 to 187 Kg K ha–1, depending on type of fallow, length of fallow, drainage and extent of depletion of native supplies. Additional amounts of 4 to 5 Kg N ha–1, 4 to 6 Kg P ha–1 and 14 to 20 Kg K ha–1 are obtained from the ash.Using crop nutrient removal data and approximate efficiencies of native and fertilizer N, P and K, fertilizer requirements at the reconnaissance level were estimated for selected target yields. For newly cleared uplands at cropping/fallow ratio of 2:7, N fertilizer requirements for cassava (30 t ha–1), maize (4 t ha–1), and sweet potato (16 t ha–1), were 138, 98, 42 kg ha–1 respectively. Wetland rice (4 t ha–1) required 55 kg N ha–1. Corresponding P fertilizer requirements for cassava, maize, sweet potato, upland rice (1.5 t ha–1) and ground-nut (1 t ha–1) were 190, 80, 30, 30 and 16 kg P ha–1 respectively. Wetland rice required 83 kg P ha–1. Substantial residual values of applied P are to be expected. Cassava required 60 kg ha–1 of K on newly cleared land. In soils of lowered nutrient status higher N, P, and K fertilizer requirements were indicated for all crops.Land use data from Sierra Leone were used to illustrate how the total quantities of N, P and K fertilizers in a country in the forest zone of Africa can be approximated. Fertilizer needs in Sierra Leone were in decreasing order P > N K. N, P and K requirements were estimated to be 10,000 t, 20,000 t and 4,000 t respectively. The nutrient balance sheet method described in this paper is a useful tool to estimate the order of magnitude of fertilizer requirement at selected target yields for countries in Africa.  相似文献   

20.
Field studies on the substitution of N and P fertilizers with farm yard manure (FYM) and their effect on the fertility status of a loamy sand soil in rice—wheat rotation are reported. The treatments consisted of application of 12 t FYM ha–1 in combination with graded levels of N and P. Application of fertilizer N, FYM and their different combinations increased the rice yield significantly. There was no significant response to P application. The magnitude of response to the application of 12 t FYM and its combined use with each of 40 kg and 80 kg N ha–1 was 0.7, 2.2 and 3.9 t ha–1 respectively. Application of 120 kg N ha–1 alone increased the yield by 3.9 t ha–1, and was comparable to rice yield obtained with 80 kg N and 12 t FYM ha–1. This indicated that 12 t FYM ha–1 could be substituted for 40 kg N as inorganic fertilizer in rice. In addition FYM gave residual effects equivalent to 30 kg N and 13.1 kg P ha–1 in the succeeding wheat. The effect of single or combined use of inorganic fertilizers and FYM was significantly reflected in the build up of available N, P, K and organic carbon contents of the soil. The relationship for predicting rice yield and nutrients uptake were also computed and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号