首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Asphaltenes and resins are two of the several, but important, heavy organics present in petroleum fluids. Asphaltenes are operationally defined as the non-colatile and polar fraction of petroleum that is insoluble in n-alkanes (i.e., n-pentane). Conversely resins are defined as the non-colatile and polar fraction of petroleum that is soluble in n-alkanes (i.e., n-pentane), and aromatic solvents (i.e., toluene), and insoluble in ethyl acetate. A commonly accepted view in the petroleum chemistry is that crude oil asphaltenes form micelles which are stabilized by adsorbed resins kept in solution by aromatics. Two key parameters that control the stability of asphaltene micelles in a crude oil are the ratio of aromatics to saturates and that of resins to asphaltenes. When these ratios decrease, asphaltene micelles will coalesce and form larger aggregates. The precipitation of asphaltene aggregates can cause problems such as reservoir plugging and wettability reversal.  相似文献   

2.
A crude oil has four main constituents: saturates, aromatics, resins, and asphaltenes. The asphaltenes in crude oil are the most complex and heavy organic compounds. The classic definition of asphaltenes is based on the solution properties of petroleum residuum in various solvents. Asphaltenes are a solubility range that is soluble in light aromatics such as benzene and toluene, but are insoluble in lighter paraffins. The particular paraffins, such as n-pentane and n-heptane, are used to precipitate asphaltenes from crude oil. Deposition of asphaltenes in petroleum crude and heavy oil can cause a number of severe problems. The precipitation of asphaltene aggregates can cause such severe problems as reservoir plugging and wettability reversal. Asphaltenes can precipitate on metal surface. Cleaning the precipitation site as well as possible appears to slow reprecipitation. To prevent deposition inside the reservoir, it is necessary to estimate the amount of deposition due to various factors. The processes can be changed to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective. Asphaltene flocculation can be controlled through better knowledge of the mechanisms that cause its flocculation in the first place. The processes can be controlled to minimize the asphaltene flocculation, and chemical applications can be used effectively to control depositions when process changes are not cost effective.  相似文献   

3.
A crude oil has four main SARA constituents: saturates, aromatics, resins, and asphaltenes. The asphaltenes in crude oil are the most complex and heavy organic compounds. The asphaltenes contain highly polar substituents and are insoluble in an excess of n-heptane (or n-pentane). The classic definition of asphaltenes is based on the solution properties of petroleum residuum in various solvents. Asphaltenes are a solubility range that is soluble in light aromatics such as benzene and toluene, but is insoluble in lighter paraffins. The particular paraffins, such as n-pentane and n-heptane, are used to precipitate asphaltenes from crude oil. The effects of four different solvents (water, carbon dioxide, propane, and ethanol) on the deasphalting process under the supercritical conditions were reviewed. Supercritical water is an excellent solvent for removing of high molecular weight organic compounds such as asphaltenes from crude oils under the supercritical conditions.  相似文献   

4.
The Solubility and Three-Dimensional Structure of Asphaltenes   总被引:4,自引:0,他引:4  
The tendency of the asphaltenes to form aggregates in hydrocarbon solution is one of their most characteristic features and has tended to complicate the determination of the structure of petroleum In addition, if the composition and properties of the precipitated asphaltenes reflect those of the micelles in solution, the latter should be considered as mixed micelles. This is a reasonable assumption in view of the large quantities of soluble resins found in the precipitated solid

Empirical observations indicate that the resins play an important role in stabilizing asphaltenes in crude oil and under unfavorable solvent conditions the asphaltene species are prone to further aggregation into clusters that are unstable and precipitate from the crude oil. It is also suggested that the resins and the asphaltenes from a particular crude oil have points of structural similarity relative to the asphaltenes and resins from another crude oil. On a more localized scale, i.e. in one particular crude oil there are also structural differences within the constituents of asphaltenes and structural differences within the constituents of the resins are also anticipated

Therefore, the structure of the micelles within any one crude oil must be expected to be varied and non-homogenous. From the evidence cited herein, it follows that the potential for graphite-type stacking by the asphaltene molecules in the center of a micelle might not be as great as the potential for the micelles forming by asphaltene-resin interactions rather than by asphaltene-asphaltene interactions  相似文献   

5.
An analysis of the effects of an almost continuous chemical distribution of asphaltenes and resins on the molecular recognition processes occurring in crude oil indicates that their aggregates will have a broad distribution both in the chemical composition and in the strength of the intermolecular interactions responsible for the aggregation. Then, crude oil cannot be described just as a sol formed by solid asphaltene particles dispersed by resins or as a simple micellar system of asphaltene and resin molecules. The molecular aggregates may vary from solid particles formed by asphaltenes and resins to loosely bound micelles with quite short lifetimes. These different aggregates may coexist within the crude oil and many will exchange components with others. The entropic contributions to the changes in free energy upon aggregation were also discussed. Molecular mechanics calculations showed that a model asphaltene aggregate from Athabasca exhibits stronger interactions with its resins than with solvents such as toluene and n-octane. The resins showed a considerable selectivity for the different adsorption sites of the asphaltene aggregate. This selectivity was stronger than that found for the solvent molecules, indicating that it is enthalpically more favorable for them to form aggregates with the asphaltenes. The selectivity may also help to explain the specificity of some resins that are able to disperse only the asphaltenes of certain types of crude oils while failing to do the same for others.  相似文献   

6.
In petroleum science, the term resin generally implies material that has been eluted from various solid adsorbents, whereas the term maltenes (or petrolenes) indicates a mixture of the resins and oils obtained as filtrates from the asphaltene precipitation. Thus, after the asphaltenes are precipitated, adsorbents are added to the n-pentane solutions of the resins and oils, by which process the resins are adsorbed and subsequently recovered by the use of a more polar solvent, and the oils remain in solution. The resin fraction plays an important role in the stability of petroleum and prevents separation of the asphaltene constituents as a separate phase. Indeed, the absence of the resin fraction (produced by a variety of methods) from the maltenes influences the ability of the de-resined maltenes to accommodate the asphaltenes either in solution or as a stable part of a colloidal system. In spite of the fact that the resin fraction is extremely important to the stability of petroleum, there is surprisingly little work reported on the characteristics of the resins. This article summarizes the work that has been carried out in determining the character and properties of the resin constituents. Suggestions are also made regarding current thoughts of the role of these constituents on the structure and stability of petroleum.  相似文献   

7.
沥青质在原油、渣油体系中常以分子聚集体的形式存在,要研究沥青质的分子组成和结构以及含沥青质重油的加工,基础是要实现沥青质分子聚集体的解聚、分离。基于此,针对沥青质分子聚集体中存在的分子间相互作用(力),从良溶剂稀释、消除聚集作用位点、适度热作用、超声波作用及碰撞诱导解离等五个方面阐述了沥青质分子聚集体解离方法及进展,进一步介绍了基于沥青质分子极性、分子尺寸、酸碱性以及反应性等方面开展沥青质分子水平分离的方法及进展。  相似文献   

8.
Asphaltenes are the heaviest and most complicated fraction in a crude oil sample and consist of condensed polynuclear aromatics, small amounts of heteroatoms (e.g., S, N, and O), and some traces of metal elements (e.g., nickel and vanadium). The main mechanisms of asphaltene deposition are precipitation (formation of asphaltene solids out of liquid phase), aggregation (formation of larger asphaltene particles), and deposition (adsorption and adhesion onto the surface). Asphaltene deposition is a major unresolved flow assurance problem in the petroleum industry, which may occur anywhere in the production system consists of reservoir, wellbore, through flowing and the separator. Asphaltene moieties in crude oil are found to carry residual surface electric charge, so by exerting an electrical field in a specific length of pipe, asphaltenes will deposit and we will have no blockage problem. Determining asphaltene electric charge is an important issue that will be done by static experiment, and then effect of electrical field on asphaltene deposition in dynamic state should be investigated. This paper discusses electric field effect on asphaltene deposition and represents a way to deposit asphaltene moieties in specific location.  相似文献   

9.
Asphaltenes from four different crude oils (Arab Heavy, B6, Canadon Seco, and Hondo) were fractionated in mixtures of heptane and toluene and analyzed by small angle neutron scattering (SANS). Fractionation appeared to concentrate the most polar species into the least soluble sub-fraction as indicated by elemental analysis. SANS results indicated a wide spectrum of asphaltene aggregate sizes and molecular weights; however, the less soluble (more polar) fraction contributed the majority of the species responsible for asphaltene aggregation in solution. This more polar, less soluble fraction is likely the major cause for many petroleum production problems such as deposition and water-in-oil emulsion stabilization. A comparison of molecular weight and aggregate size indicated that asphaltenes formed fractal aggregates in solution with dimensions between 1.7 and 2.1. This was consistent with the “archipelago” model of asphaltene structure. Resins were shown to effectively solvate asphaltene aggregates as observed by an increase in asphaltene solubility, reduction in aggregate size and molecular weight, and an increase in the fractal dimension to ~ 3.  相似文献   

10.
Crude oil contains four chemical group classes, namely saturates, aromatics, resins, and asphaltenes (SARA fractions). Resins fraction of crude oil comprises polar molecules often containing heteroatoms such as nitrogen, oxygen, or sulfur. Resin is a heavier fraction than aromatics and saturates. Resins are composed of fused aromatic rings with branched paraffin and polar compounds. The resin fraction is soluble in light alkanes such as pentane and heptane, but insoluble in liquid propane. The resins are adsorbed on a solid such as alumina, clay, or silica, and subsequently recovered by use of a more polar solvent and the oils (aromatics and saturates) remain in solution. The resins often coprecipitate with the asphaltenes in controlled propane deasphalting procedures. The composition of the resins can vary considerably and is dependent on the kind of precipitating liquid and on the temperature of the liquid system. The resins are adsorbed on a solid such as alumina, clay, or silica, and subsequently recovered by use of a more polar solvent and the oils (aromatics and saturates) remain in solution.  相似文献   

11.
Abstract

Asphaltenes from four different crude oils (Arab Heavy, B6, Canadon Seco, and Hondo) were fractionated in mixtures of heptane and toluene and analyzed by small angle neutron scattering (SANS). Fractionation appeared to concentrate the most polar species into the least soluble sub-fraction as indicated by elemental analysis. SANS results indicated a wide spectrum of asphaltene aggregate sizes and molecular weights; however, the less soluble (more polar) fraction contributed the majority of the species responsible for asphaltene aggregation in solution. This more polar, less soluble fraction is likely the major cause for many petroleum production problems such as deposition and water-in-oil emulsion stabilization. A comparison of molecular weight and aggregate size indicated that asphaltenes formed fractal aggregates in solution with dimensions between 1.7 and 2.1. This was consistent with the “archipelago” model of asphaltene structure. Resins were shown to effectively solvate asphaltene aggregates as observed by an increase in asphaltene solubility, reduction in aggregate size and molecular weight, and an increase in the fractal dimension to ? 3.  相似文献   

12.
为明确胜坨油田坨28区块原油中活性组分与有机碱乙醇胺间的相互作用对动态界面张力的影响,采用SARA四组分分离方法对坨28区块原油进行分离,获得饱和分、芳香分、胶质和沥青质等组分;利用醇碱萃取法获得酸性组分;通过旋转滴界面张力仪测定了乙醇胺与坨28区块原油活性组分模拟油间的动态界面张力。研究结果表明:酸性组分是原油的主要活性组分,其质量分数及结构对有机碱与原油间界面张力的行为具有关键性影响,体系动态界面张力的最低值可达10-2m N/m数量级;酸性组分质量分数越大,低界面张力维持时间越长。对于坨28区块原油,与乙醇胺作用的难易顺序为:酸性组分最强,胶质次之,沥青质、饱和分和芳香分与之作用比较微弱。  相似文献   

13.
石油沥青质组成复杂,氢/碳原子比低,硫、氮等杂原子含量高,给石油开采、运输和加工处理带来困难,究其原因是石油沥青质分子结构复杂,极易发生超分子聚集,形成聚集体。目前对沥青质超分子聚集的认识越来越广泛,并被石油化学工作者广泛接受。沥青质超分子聚集是通过电荷转移作用、偶极作用以及氢键作用形成沥青质分子之间的缔合,这些弱相互作用在石油体系的分子间普遍存在,实现沥青质聚集体的解聚是重质油高效轻质化的基础。研究表明,采用化学方法改变沥青质分子结构或采用物理方法改变沥青质物理状态,均能在一定程度上使得沥青质聚集体解聚。  相似文献   

14.
The asphaltene fraction of crude oil contains a variety of acidic and basic functional groups. During oil production and transportation, changes in temperature, pressure or oil composition can cause asphaltenes to precipitate out crude oil through the flocculation among these polar functional groups. In this study, two types of oil-soluble polymers, dodecylphenolic resin and poly (octadecene maleic anhydride), were synthesized and used to prevent asphaltenes from flocculating in heptane media through the acid-base interactions with asphaltenes. The experimental results indicate that these polymers can associate with asphaltenes to either inhibit or delay the growth of asphaltene aggregates in alkane media. However, multiple polar groups on a polymer molecule make it possible to associate with more than one asphaltene molecule, resulting in the hetero-coagulation between asphaltenes and polymers. It was found that the size of the asphaltene-polymer aggregates was strongly affected by the polymer-to-asphaltene weight (or number) ratio. At low polymer-to-asphaltene weight ratios, asphaltenes keep flocculating with themselves and with polymers until the floes precipitate out of solution. On the other hand, at high polymer-to-asphaltene weight ratios, asphaltene-polymer aggregates peptized by the extra polymer molecules can remain fairly stable in the solution.  相似文献   

15.
The self-association of asphaltenes in toluene is believed to occur step-wise, rather than by the formation of micelles. A number of step-wise models have been used to fit the calorimetric titration of asphaltenes in dried toluene solutions, with excellent results. All the models are based on chemical reactions equivalent to the ones found in polymerization. The study shows that the choice of the average properties of asphaltenes, such as the molecular weight, is critical in the final value of the parameter of interest, namely the average heat of self-association ΔHa. The low values of ΔHa obtained suggest that a fraction of asphaltenes is not active in the calorimetric experiments. Asphaltenes from Venezuela (LM1) and Mexico (KU) have been fractionated by precipitation with a mixture of acetone and toluene. It is considered that the most polar compounds are collected in the soluble fraction. A calorimetry study was performed on the two fractions, and the results show that the soluble fraction (SOL) has a much higher heat developed than the insoluble fraction (INS). This suggests again that a fraction of asphaltenes is not active in the calorimetric experiments, either because it does not self-associate or because the dilution effect is not strong enough to break the aggregates. Fluorescence and IR spectroscopy experiments confirm there is self-association in INS fraction, leading to the conclusion that asphaltene aggregates are formed by bonds of different strengths. The stronger aggregates would be predominantly in INS fraction and would be inactive in the calorimetric experiments.  相似文献   

16.
ABSTRACT

The asphaltene fraction of crude oil contains a variety of acidic and basic functional groups. During oil production and transportation, changes in temperature, pressure or oil composition can cause asphaltenes to precipitate out crude oil through the flocculation among these polar functional groups. In this study, two types of oil-soluble polymers, dodecylphenolic resin and poly (octadecene maleic anhydride), were synthesized and used to prevent asphaltenes from flocculating in heptane media through the acid-base interactions with asphaltenes. The experimental results indicate that these polymers can associate with asphaltenes to either inhibit or delay the growth of asphaltene aggregates in alkane media. However, multiple polar groups on a polymer molecule make it possible to associate with more than one asphaltene molecule, resulting in the hetero-coagulation between asphaltenes and polymers. It was found that the size of the asphaltene-polymer aggregates was strongly affected by the polymer-to-asphaltene weight (or number) ratio. At low polymer-to-asphaltene weight ratios, asphaltenes keep flocculating with themselves and with polymers until the floes precipitate out of solution. On the other hand, at high polymer-to-asphaltene weight ratios, asphaltene-polymer aggregates peptized by the extra polymer molecules can remain fairly stable in the solution.  相似文献   

17.
原油正构烷烃沥青质聚沉机理研究及沉淀量测定   总被引:8,自引:3,他引:8  
用IP 143标准方法测定了我国孤岛和草桥原油正构烷沥青质沉淀量。结果表明两种原油的沥青质沉淀量均随沉淀剂分子量增大而减小、随剂油比增大而增大。在原油沥青质 胶质胶束模型的基础上提出了一种新的沥青质聚沉机理 ,该机理的基本假设是原油中沥青质分子以胶束形式存在 ,其中胶核为沥青质缔合物 ,溶剂化层为胶质和溶剂分子。通过分析沉淀剂性质、剂油比、体系温度和压力等对沥青质 胶质胶束稳定性的影响得出了沥青质沉淀点、沉淀量、沉淀物平均分子量以及沉淀物平均颗粒大小随沉淀剂性质和剂油比等因素变化的规律。经比较说明 ,这些规律与本文及文献实验结果相符  相似文献   

18.
ABSTRACT

Solid petroleum asphaltenes have been fractionated according to solubility in toluene/n-heptane mixtures of increasing toluene content. A large hysteresis was observed between this dissolution and the precipitation from the crude oil. In order to shed light on the solution mechanism, the fractions obtained have been analyzed using size exclusion chromatography (SEC-HPLC-UV-vis), VPO, elemental analysis, UV-vis adsorption spectroscopy and phenol interaction values and methylene content by FTir. Less polar non-associating low molecular weight species are dissolved and a specific extraction of porphyrins is observed. An increased association in the insolubles is indicated. More basic interaction sites are available on the asphaltenes in both fractions relative to the native asphaltene. From the SEC chromatograms it was seen that the soluble fractions did not associate as the insoluble fractions even when making up more than 60 % of the total asphaltenes.  相似文献   

19.
Borehole blockage caused by asphaltene deposition is a problem in crude oil production in the Tahe Oilfield, Xinjiang, China. This study has investigated the influences of crude oil compositions, temperature and pressure on asphaltene deposition. The asphaltene deposition trend of crude oil was studied by saturates, aromatics, resins and asphaltenes (SARA) method, and the turbidity method was applied for the first time to determine the onset of asphaltene flocculation. The results showed that the asphaltene deposition trend of crude oil by the turbidity method was in accordance with that by the SARA method. The asphaltene solubility in crude oil decreased with decreasing temperature and the amount of asphaltene deposits of T739 crude oil (from well T739, Tahe Oilfield) had a maximum value at 60 o C. From the PVT results, the bubble point pressure of TH10403CX crude oil (from well TH10403CX, Tahe Oilfield) at different temperatures can be obtained and the depth at which the maximum asphaltene flocculation would occur in boreholes can be calculated. The crude oil PVT results showed that at 50 , 90 and 130 o C, the bubble point pressure of TH10403CX crude oil was 25.2, 26.4 and 27.0 MPa, respectively. The depth of injecting asphaltene deposition inhibitors for TH10403CX was determined to be 2,700 m.  相似文献   

20.
Asphaltenes and resins of crude oil from the Usa oil field have been subjected to fractionation. The asphaltenes have been separated into fractions by fractional precipitation with chloroform/hexane solvent blends in the ratios of 30/70, 30/75, and 30/120. The resins have been fractionated by liquid adsorption chromatography on silica gel with hexane/benzene and hexane/ethanol mixed solvents taken in the ratios of 3/1, 1/1, and 10/1, 3/1, respectively. The obtained fractions have been analyzed by 1H and 13C nuclear magnetic resonance spectroscopy and infrared spectroscopy, their molecular masses have been measured, and the elemental composition has been investigated. On the basis of structuralgroup analysis data, the structures of the resin and asphaltene molecules have been hypothesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号