首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

2.
The subsolidus phase relationships in the system Si,Al,Y/N,O were determined. Thirty-nine compatibility tetrahedra were established in the region Si3N4─AIN─Al2O3─Y2O3. The subsolidus phase relationships in the region Si3N4─AIN─YN─Y2O3 have also been studied. Only one compound, 2YN:Si3N4, was confirmed in the binary system Si3N4─YN. The solubility limits of the α'─SiAION on the Si3N4─YN:3AIN join were determined to range from m = 1.3 to m = 2.4 in the formula Y m /3Si12- m Al m N16. No quinary compound was found. Seven compatibility tetrahedra were established in the region Si3N4─AIN─YN─Y2O3.  相似文献   

3.
A SiO2─Al2O3─CaO─CaF2 ionomer glass was investigated using thermal analysis, X-ray diffraction, and scanning electron microscopy. The purpose of this investigation was to control the susceptibility of the glass to acid attack. The differential thermal analysis trace exhibited a sharp glass transition at about 645°C and two exotherms. The first exotherm corresponded to liquid–liquid phase separation followed by crystallization of fluorite. The second, much larger, exotherm was the result of crystallization of the remaining glass phase to form anorthite. Prolonged heat treatment below the glass-transition temperature demonstrated that crystallization of fluorite can occur without prior liquid–liquid phase separation.  相似文献   

4.
The BN solubilities for B2O3, B2O3─SiO2, and B2O3─CaO systems have been measured mainly at 1823 K using a graphite crucible. The capability of the systems for nitrogen dissolution is compared with that of silicate systems in terms of nitride capacity. The dependence of nitrogen solubility in molten CaO containing 15 mol% of B2O3 on oxygen and nitrogen partial pressures is also investigated. It has been found that there are two mechanisms for nitrogen dissolution, namely as chemically bonded nitrogen and as physically dissolved nitrogen gas.  相似文献   

5.
The phase diagram for the CuO-rich part of the La2O3─CuO join was redetermined. La2Cu2O5 was found to have a lower limit of stability at 1002°± 5°C and an incongruent melting temperature of ∼1035°C. LagCu7O19 had both a lower (1012°± 5°C) and an upper (1027°± 5°C) limit of stability. Subsolidus phase relations were studied in the La2O3─CuO─CaO system at 1000°, 1020°, and 1050°C in air. Two ternary phases, La1.9Ca1.1Cu2O5.9 and LaCa2Cu3O8.6, were stable at these temperatures, with three binary phases, Ca2CuO3, CaCu2O3, and La2CuO4. La2Cu2O5 and La8Cu7O19 were stable only at 1020°C, and did not support solid-solution formation.  相似文献   

6.
Grain-size distribution in various Al2O3─ZrO2 (2.5 mol% Y2O3) ceramics during high-temperature annealing was examined. In alumina-rich alloys, the grain size of major and minor phases was very different, while grain size was almost uniform in zirconia-rich alloys. This difference in grainsize distribution was related to the difference in grain growth rate of the major phase and to the effectiveness of grain-boundary pinning by minor-phase grains.  相似文献   

7.
The subsolidus phase equilibria of the MgO─V2O5─SiO2 system was studied by solid-state reaction and powder X-ray diffractometry. The resulting ternary is discussed with respect to corrosion of magnesia- and silica-containing refractories by vanadium-containing fuels.  相似文献   

8.
A CaO─SiO2─P2O5─CaF2 glass powder hardened within 4 min when mixed with an ammonium phosphate solution to form CaNH4PO4·H2O. After it had soaked in a simulated body fluid for 3 d, forming hydroxyapatite, the cement showed a compressive strength of 80 MPa. Implanted into a rat tibia, the mixed paste formed a tight chemical bond to the living bone within 4 weeks. Such a bioactive cement could be useful not only for fixing various kinds of implants to the surrounding bones but also, by itself, as a bone filler.  相似文献   

9.
An optimal set of thermodynamic functions for the ZrO2─YO1.5 system are obtained using phase diagram and thermodynamic data. The liquid is described by a subregular solution model. Both cubic ZrO2 and YO1.5 solid solutions are regarded as one cubic solution, which is also treated as a subregular solution. The ordered Zr3Y4O12 phase is treated as a stoichiometric compound. A regular solution model is applied to the other solid solutions. Tentative equilibrium boundaries between monoclinic and tetragonal ZrO2 solid solutions are evaluated from information about the T 0 line. The calculated phase diagram and thermodynamic functions agree well with experimental data.  相似文献   

10.
Phase equilibria in the system ZrO2─InO1.5 have been investigated in the temperature range from 800° to 1700°C Up to 4 mol%, InO1.5 is soluble in t -ZrO2 at 1500°C. The martensitic transformation temperature m → t of ZrO2 containing InO1.5 is compared with that of ZrO2 solid solutions with various other trivalent ions with different ionic radii. The diffusionless c → t ' A phase transformation is discussed. Extended solid solubility from 12.4 ± 0.8 to 56.5 ± 3 mol% InO1.5 is found at 1700°C in the cubic ZrO2 phase. The eutectoid composition and temperature for the decomposition of c -ZrO2 solid solution into t -ZrO2+InO1.5 solid solutions were determined. A maximum of about 1 mol% ZrO2 is soluble in bcc InO1.5 phase. Metastable supersaturation of ZrO2 in bcc InO 1.5 and conditions for phase separation are discussed.  相似文献   

11.
In order to verify the possibility of using glass-ceramic materials as tile coatings, the devitrification processes of three industrial formulations belonging to the Li2O─Al2O3─SiO2 glass-ceramic system were investigated by differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and IR spectroscopy. Compositional variations were made by addition of large amounts of MgO or CaO or PbO (ZnO) oxides as well as through smaller additions of other oxides. In these systems the surface crystallization contributes appreciably to the bulk crystallization mechanism. All the systems investigated show a high tendency toward crystallization even at very high heating rates, developing a very close network of interlocked crystals of synthetic β-spodumene-silica solid solutions (LiAlSi4O10). The results of this research are expected to establish the conditions under which these glass-ceramic systems can be practically used as tile glazes.  相似文献   

12.
The viscosity of sodium borate slags at high Na2O concentrations (37.3 to 49.4 mol%) and high temperatures (1000° to 1300°C) follows an Arrhenius-type relationship. This relationship was also observed for sodium borate slags (mass% Na2O/mass% B2O3= 0.86) containing CaO and CaF2 for the same temperature range. There has been a reduction in viscosity of the sodium borate slags (mass% Na2O3mass% B2O = 0.53 to 0.86) with increase in Na2O concentration. On adding CaO (10 to 50 mass%) to the sodium borate slag (mass% Na2O/mass% B2O3= 0.86), the viscosity increased considerably, while an addition of CaF2 (S to 15 mass%) to the slag (30.9 mass% Na2O3 35.8 mass% B2O3, 33.3 mass% CaO) decreased the viscosity. The average activation energies of Na2O─B2O3, Na2O─B2O3─CaO3 and Na2O─B2O3─CaO─CaF2 slag systems have been estimated as 14.6, 124.7, and 41.4 kJ/mol, respectively, for the given composition ranges and 1000° to 1300°C temperature range.  相似文献   

13.
The reaction sequences during calcination of oxide mixtures were studied for the PbMg1/3Nb2/3O3─PbTiO3 (PMN-PT) system. The effect of reactivity and composition of the starting mixtures was investigated. In the present study, a B-site-deficient, cubic pyrochlore phase in the PbO-Nb2O5 system was formed at 500°C. The perovskite phase of PMN was formed at 7007deg;C through the diffusion of MgO into the pyrochlore phase. The lattice parameter of the pyrochlore phase decreased as this transformation to perovskite progressed.  相似文献   

14.
The phase diagram for the ternary system MgO─P2O5─H2O at 25°C has been constructed. The magnesium phosphates represented are Mg(H2PO4)2· n H2O ( n = 4, 2, 0), MgHPO4·3H2O, and Mg3(PO4)2· m H2O ( m = 8, 22). Because of the large differences in the solubilities of these compounds, the technique which involves plotting the mole fractions of MgO and P2O5 as their 10th roots has been employed. With the exception of MgHPO4·3H2O, the magnesium phosphates are incongruently soluble. Because incongruency is associated with a peritectic-like reaction, the phase Mg2(PO4)3· 8H2O persists metastably for an extended period.  相似文献   

15.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   

16.
The phase separation in 12 mol% CeO2─ZrO2 ceramic heattreated in a mixture of H2 and Ar was investigated by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and Raman scattering. After heat treatment at temperatures above 1200°C, the tetragonal solid-solution phase separated into Zr2Ce2O7 and the monoclinic phase. Raman scattering measurements also provided supplementary evidence for the phase separation. XPS showed that the valence change from Ce4+ to Ce3+ predominantly occurred, whereas the reduction from Zr4+ to Zr3+ took place above 1200°C. It is concluded, that in the highly reduced sample, where the valence changes from Ce4+ (Zr4+) to Ce3+ (Zr3+), the phase separation is noticeably promoted. Below 1000°C the phase separation was suppressed because of no appreciable valence change to trigger the phase separation, and the single tetragonal phase was retained.  相似文献   

17.
Aqueous processing of Al2O3─ZrO2 (123 mol% CeO2) composites, combined with sintering conditions, was used to control the microstructure and its influence on the martensitic transformation temperature of t -ZrO2 and the transformation-toughening contribution at room temperature. The resultant ZrO2 grain sizes in the dense composites were related to the transformation-toughening behavior of t -ZrO2. The data show that (1) the best processing conditions exist when the electrophoretic mobilities of the two solids are positive, adequately high to ensure colloidal stability, efficient packing,and uniform ZrO2 distribution but differ greatly in magnitude, (2) the colloidal stability of ZrO2 controls the overall stability and the rheological and processing behavior of this mixture, (3) the grain size distribution in dense pieces sintered for 1 h at 1500°C is comparable to the particle size distribution of the powders, (4) the martensite start temperature for the tetragonal to-monoclinic transformation in Al2O3 containing 20 and 40 vol% ZrO2 increases and can approach 0°C with increasing average ZrO2 grain size, and as a result, (5) the fracture toughness values at room temperature are raised from 4–5 MPa.m1/2 to 9–12 MPa.m1/2 for these two compositions.  相似文献   

18.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

19.
The phase composition of fine ZrO2 and ZrO─Y2O3 powders prepared by the process of spray pyrolysis was detected using XRD. An interesting phenomenon has been observed. In this paper, the influence of the temperature and carrier gas flux on the phase composition of as-prepared powders is described. The formation and transformation mechanisms of the powder phase in the process are also discussed.  相似文献   

20.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号