共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高锂离子电池荷电状态(SOC)的估计精度,文中采用基于高斯过程回归(GPR)机器学习的锂离子电池数据驱动方法,首先选取数据集,将电池测量参数电流和电压作为模型的输入向量,SOC作为模型的输出向量来训练模型,为了提高模型精度,文中改进了高斯过程回归模型.将上一时刻估计的SOC值加入到移动窗口中,并与电流和电压一起作... 相似文献
2.
电化学阻抗谱(electrochemical impedance spectroscopy,EIS)蕴含丰富的电池健康状态(state of health,SOH)信息,但不同频率的电化学阻抗数据间并不相互独立,直接利用全频段EIS数据构建SOH估计模型,往往存在精度低、计算复杂度高等问题。鉴于此,本文提出了一种基于特征选择和高斯过程回归的SOH估计方法,可通过序贯前向搜索策略,结合交叉验证均方根误差指标,逐步搜索阻抗特征子集。基于此,采用基于水平图的多目标可视化决策方法,以均衡模型复杂度与精度为目标,综合考虑特征个数与交叉验证均方根误差,实施阻抗特征子集优选。所提方法已成功地应用于公开发表数据集。相比全频段EIS建模方法,本文作者所提方法可显著提升SOH估计精度,大幅降低EIS测试时间,为电化学阻抗技术应用于SOH在线估计提供理论和技术支撑。 相似文献
3.
锂离子荷电状态(State of charge,SOC)的精准估计是锂离子电池安全稳定运行的基础。传统的误差反向传播(Back propagation,BP)神经网络估计SOC的精度不高,而循环神经网络(Recurrent neural network,RNN)也容易陷入局部最优。针对这些问题,提出了自适应灾变遗传-循环神经网络(ACGA-RNN)联合算法,将自适应灾变遗传算法(Adaptive cataclysm genetic algorithm,ACGA)用于优化RNN的初始权值和阈值,提高了最优权值和阈值的全局搜索能力,从而有效提升锂离子电池SOC的估计精度。基于锂离子电池充放电的试验数据,将所提ACGA-RNN联合算法与RNN、GA-RNN算法分别用于锂离子电池的SOC估计。测试结果显示,相较于传统的RNN算法与GA-RNN算法,提出的ACGA-RNN联合算法获得了最佳的SOC估计精度,在DST工况下的估计平均绝对误差为1.74%,低于传统RNN和GA-RNN的估计精度3.68%和2.49%;另外,在45℃和0℃条件下,ACGA-RNN联合算法估计的平均绝对值误差分别为1.7... 相似文献
4.
由于锂离子电池本身复杂的老化特性,准确预测电池的健康状态和剩余寿命是一个尚未解决的挑战,这限制了消费电子、电动汽车和电网储能等技术的发展.电池的老化机制复杂且相互耦合,难以采用基于模型的方法进行准确的建模.本工作提出了一种基于数据驱动的锂离子电池容量估计方法,通过分析电池的电压-放电容量曲线随循环老化的演变模式,提取具有电化学意义的特征,采用高斯过程回归(Gaussian process regression,GPR)对电池的容量进行预测.该模型的输入特征可以在线获取,不需要对电池进行完整的充放电循环即可估计容量.在钴酸锂电池和磷酸铁锂电池数据集上分别进行了实验验证,结果表明该方法具有较好的泛化能力,对不同类型的电池均能实现准确的容量估计.将本文的方法与阻抗谱作为输入的GPR模型进行对比试验,结果表明该特征能获得更好的估计精度.这一结果说明了合适的特征选择能显著影响锂离子电池的数据驱动模型性能,为电池的状态预测与诊断提供了参考. 相似文献
5.
6.
锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,HIs)和高斯过程回归(Gaussian process regression,GPR)相结合预测锂电池SOH的机器学习模型。首先,通过分析锂电池放电过程,提取若干易于获得且适合动态操作的直接外部特征作为间接健康指标,并计算它们和SOH的相关性,最终筛选出平均放电电压、等压降放电时间、最高放电温度和平台期放电电压初始骤降值作为健康指标;其次,以上述健康指标作为输入特征,利用GPR算法建立锂电池退化模型,对NASA锂电池数据集进行预测,平均绝对误差(mean absolute error,MAE)不超过2%,均方根误差(root mean square error,RSME)控制在4%之内;最后,将本工作模型与其他常用机器学习模型进行比较,再将模型带入不同实验条件的电池中进行泛化性能分析,最大预测误差控制在6%之内,实验结果表明,本工作提出的间接健康指标和GPR模型具有相对较高的预测精度和优秀的泛化能力。 相似文献
7.
锂离子电池的荷电状态(State of charge,SOC)和健康状态(State of health,SOH)是电池储能系统在运维过程中所需要估算的重要参数。为了能够对电池状态进行可靠估计,采用深度学习方法中的简单循环单元(Simple recurrent unit,SRU)来实现对电池SOC和SOH的联合估计。首先,通过利用SRU在处理时序问题上的优势,建立了基于SRU的电池SOC估计模型;接着,给模型引入了数据单元的输入形式,并使用含有电池老化信息的样本数据来对模型进行训练,使得训练好的模型能够实现任意电池老化程度下的SOC估计;最后,通过对该模型输出的SOC估计值中所隐含的老化信息进行挖掘,实现对电池SOH的估计。试验结果表明,该联合估计方法可以实现电池SOC与SOH的准确估计,并且对不同种类的电池也有较好的适用能力。 相似文献
9.
锂电池的荷电状态(SOC)估算是电动汽车的系统管理与能量控制的重要参数。在SOC估算过程中,电池参数变化和老化问题会对结果造成很大影响。针对这一问题,在递推最小二乘法算法(RLS)辨识锂电池模型的参数的基础上更新电池容量,通过容积卡尔曼滤波(CKF)估算电池SOC,结合RLS和CKF实现在电池参数发生变化时准确估计SOC。以锂离子电池作为对象,应用所提出的算法实现锂电池的SOC在线估计,验证算法的准确性。 相似文献
10.
动力电池单体容量不一致会导致动力电池组在充放电过程中失去平衡,影响动力电池组的使用效果,降低动力电池组的使用寿命.为了解决这一难题,本工作设计了一种基于荷电状态(SOC)值的主动均衡电池管理系统.该电池管理系统利用安时积分法估计动力电池组中各电池单体的SOC值,在此基础上计算动力电池组的SOC平均值,然后将各动力电池单... 相似文献
11.
12.
朱文凯周星刘亚杰张涛宋元明 《储能科学与技术》2023,(2):570-578
锂离子电池荷电状态(state of charge,SOC)的准确估计对于保证电池系统安全运行至关重要。目前基于门控循环单元(gated recurrent unit,GRU)等循环神经网络的SOC估计方法得到了广泛关注,其无需预设电池模型即可实现SOC准确估计。然而,这类估计方法存在计算复杂度过高而难以在工程中实际应用的问题。针对传统GRU神经网络估计SOC时需要进行大量隐状态迭代而导致计算复杂度过高的问题,提出了网络隐状态时序继承的递推更新方式,通过改进GRU网络的输出结构,从而实现了仅需对当前时刻采样数据进行一次网络计算即可准确获取当前时刻SOC估计值。与文献中报道传统GRU方法相比,该递推GRU方法在保证SOC估计准确度不降低的情况下,能减少99%以上的计算量,具有较好的应用前景。此外,针对部分应用场景中电池训练数据缺乏的问题,方法能够结合迁移学习来快速完成网络训练。通过实验室测试数据集以及公开数据集进行验证,该方法能对不同温度环境、不同老化状态以及不同型号的锂离子电池进行准确SOC估计,其最大估计误差均不高于3%。 相似文献
13.
精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要.模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素.为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识.在此基础上,采用自适应容积卡尔曼滤波(ACKF)算法估计电池SOC,对系统噪声进行实时更新以提高估计精度.此外,对于计算过程中由于协方差矩阵失去正定性而出现平方根无法分解的问题,利用奇异值分解的方法代替Cholesky分解,以提高数值计算的稳定性.最后将BCRLS与ACKF相结合以实现模型参数和SOC的联合估计,并在不同工况和初始值不精确的情况下进行算法验证,结果表明本文所提算法具有较高的精度,平均绝对误差在2%以内. 相似文献
14.
针对锂离子电池荷电状态(State of charge,SOC)估计精度低的问题,将Sage-Husa自适应算法与无迹卡尔曼滤波算法相结合,提出了一种可以对系统噪声进行不断更新和修正的自适应滤波新算法——SH-AUKF算法。在动态应力测试(Dynamic stress test,DST)工况下,采用无迹卡尔曼滤波(Unscented Kalman filter,UKF)、自适应无迹卡尔曼滤波(Adaptive unscented Kalman filter,AUKF)和SH-AUKF三种算法分别对SOC进行估计。结果表明,SH-AUKF算法估计SOC的误差最小,估计精度最高。与UKF相比,SH-AUKF算法的估计精度提高了45.4%;与AUKF相比,SH-AUKF算法的估计精度提高了14.3%。为了进一步降低噪声干扰的偶然性和突发性对SOC估计的影响,在估计过程中加入了蒙特卡洛采样方法。结果表明,融合了蒙特卡洛方法的SH-AUKF算法估计SOC时,估计误差区间仅为±1×10-3,有效提高了估计精度。 相似文献
15.
准确估算荷电状态(SOC)可以为电池之间的均衡管理提供依据,延长锂电池组整体的使用寿命.针对中心差分卡尔曼滤波算法(CDKF)存在较大线性误差的问题,提出一种改进的CDKF算法.在原算法中引入迭代滤波思想,多次利用测量信息更新状态量估算值,使得观测信息不断迭代更新,基于LM优化方法不断修正协方差矩阵,有效减小了线性误差.首先基于二阶阻容(RC)电路单元模型,选择最小二乘参数辨识方法,辨识出模型阻容参数;然后进行HPPC实验,验证电池等效模型的准确性;最后分别在恒流放电和动态工况下应用改进后的CDKF算法对电池SOC和电压进行估计,并将估计结果与CDKF算法进行比较.两种工况下验证结果表明改进后的CDKF算法精度更高,SOC估计精度可提升1.16%,最大估计误差小于1.7%,算法收敛时间也比原算法短,改进后的CDKF算法在估计精度和鲁棒性方面均有所提升,更具有应用优势. 相似文献
16.
锂离子电池是重要的储能手段之一,对其剩余使用寿命(RUL)进行预测具有非常重要的实际意义。本工作首先针对传统特征提取方法依赖参数设置且对于不同锂离子电池数据集适应性差的缺陷,将电池数据视作矩阵,并引入奇异值分解(SVD)从测量数据和包含更多退化信息的特征提取对象中提取潜在健康因子(HIs)。其次,潜在HIs的冗余和不足会影响RUL的预测,同时考虑到主成分分析(PCA)的缺点,使用Spearman相关分析和堆叠自编码器(SAE)处理HIs得到一个融合HI。在此基础上,利用高斯过程回归(GPR)算法构建了融合HI与容量之间的模型,得到了带有不确定性表达的最终预测结果。最后,通过NASA提供的四个老化电池数据验证了所提预测模型的可行性和有效性。并额外选取MIT电池数据集验证特征提取方法的适应性。实验结果表明,所提出的RUL预测框架具有较好的预测性能,SVD特征提取方法在避免参数设置的前提下具有较好的适应性。本工作提取的HI与经过PCA融合的HI、其他HI相比,预测精度有显著提高。 相似文献
17.
18.
电池的荷电状态(state of charge,SOC)是电池管理的重要指标之一,准确的SOC估计是保证锂离子电池安全有效运行的必要条件。为提高锂离子电池SOC估计的准确性,本文基于二阶Thevenin等效模型,提出一种将无迹卡尔曼滤波(unscented Kalman filter,UKF)与BP(back propagation)神经网络相结合的SOC估计方法。在通过混合功率脉冲特性测试获取模型参数的基础上,首先利用UKF算法对电池SOC进行初步估计,通过非线性点变换的方法避免了扩展卡尔曼滤波(extended Kalman filter,EKF)在线性化过程中对系统造成的精度损失;其次,构建三层BP神经网络,综合考虑锂离子电池的充放电电压、电流等参数,对估计结果进行修正,将估计误差从初始估计结果中排除,以达到更加准确的估计结果。通过电池充放电测试仪采集锂离子电池在动态应力测试下的充放电数据,并在不同的噪声环境下将本文提出的BP-UKF算法与EFK算法和UKF算法进行对比实验分析。实验结果表明,本文提出的BP-UKF算法的最大误差在2.18%以内,平均误差在0.54%以内,均方根误差在0.0044以内,较EKF算法和UKF算法有较大程度地提升;并且在较大的环境噪声条件下,BP-UKF算法的准确性提升更为明显。 相似文献
19.
20.
李路路陶正顺潘庭龙杨玮林胡官洋 《储能科学与技术》2023,(2):544-551
为了提高锂电池模型的精度,实现锂电池状态的精确估计,本工作在二阶RC等效电路的基础上建立了锂电池的二阶分数阶电气模型,并采用自适应遗传算法实现分数阶模型的参数辨识,加快了算法收敛速度,缩短了辨识时间,避免陷入局部最优解,提高了模型参数精度;在分数阶电气模型的基础上,采用了一种基于施密特正交变换思想的无迹粒子滤波的状态估计方法,与传统的无迹粒子滤波算法相比,在采样点选取过程中,采用一种标准采样与施密特正交变换相结合的办法,对对称采样的粒子进行筛选,减少了采样点的数量,提高了计算效率,并能有效避免由于系统的非线性引起的估算结果发散或单一使用粒子滤波而引起的粒子数短缺。仿真结果表明所建立的锂电池分数阶电气模型能更精确描述锂电池的充放电动态特性,所提出的状态估计策略精度相比于常规控制策略具有更高的精度,系统鲁棒性提高,可以在误差仅为1%的范围内估计锂电池的SOC,并提高了计算效率,易于算法的实时实现。 相似文献