首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究翅片和泡沫金属铜对相变储能系统性能的影响,使用四参数随机生长法(QSGS)构建了孔隙密度(PPI)分别为20PPI、30PPI的泡沫铜复合相变材料模型,并构建了等铜质量的翅片相变材料模型。在此基础上,采用格子玻尔兹曼(LBM)数值模拟方法对相变材料(PCM)的储/放热过程进行了数值模拟,基于努塞尔数、液相率、PCM流动速度、PCM熔化/凝固时间对比分析了添加翅片以及添加泡沫金属结构对相变材料换热性能的影响。结果表明,在储热过程中,由于泡沫金属的存在会抑制熔化过程中对流换热的发展,双翅片结构的努塞尔数高于泡沫金属结构,熔化时间更短,相比于20PPI、30PPI泡沫铜复合相变材料分别缩短了28.55%、17.5%;在放热过程中,泡沫金属的存在会增加热传导面积,泡沫金属结构的凝固速度高于翅片结构,30PPI泡沫金属结构的凝固时间相比于翅片、20PPI泡沫铜复合相变材料分别缩短了65.80%、20.24%。综合考虑储放热两个过程,30PPI泡沫金属结构的总储放热时间最短,相比于翅片、20PPI泡沫铜复合相变材料分别缩短了27.81%、15.32%。在耗费相同金属材料的条件下,采用泡沫结...  相似文献   

2.
高孔隙率泡沫金属相变材料储能、传热特性   总被引:4,自引:0,他引:4  
以高孔隙率泡沫金属材料作为骨架制备而成的新型复合相变储能材料的导热系数将大大高于相变材料本身的导热系数,在储能过程中具有更好的传热效果。给出了较通用的高孔隙率泡沫金属材料等效导热系数的估算公式,并利用准稳态方法建立了复合相变材料在凝固过程的数值模型,对其凝固过程的传热特性进行了理论分析。以铝—石蜡和铜—石蜡复合材料作为研究对象。分析表明,采用复合储能材料可以使得其传热性能得到很大提高,但是也会使复合材料的储能能力有所降低。提出了一种平衡储能能力和传热性能的方法,当泡沫金属处于平衡孔隙率时,在传热性能得到极大提高的同时也使得其储能能力降低不多。同时,分析得到了外部换热环境对储能能力、传热性能以及平衡孔隙率的影响,即较大的对流换热时,若要取得适当的储能能力和传热性能,则需要较小的孔隙率。  相似文献   

3.
石蜡相变材料的导热系数较小,严重影响了其传热速率和凝固速率。通过对填充石墨泡沫/石蜡的储能系统进行凝固过程的模拟,确定了石墨泡沫对相变储能系统性能的影响。研究结果表明石墨泡沫不仅大大缩短了相变凝固时间,也使储能系统的温度分布更加均匀;通过分析冷却水进口速度和温度对复合相变材料的凝固过程的影响,说明随着冷却水进口速度的增大和温度的降低,传热速率加快,凝固时间缩短。分析了复合材料相变区的自然对流对相变过程的影响,模拟结果证明自然对流能在一定程度上加快相变材料的凝固过程。  相似文献   

4.
石蜡相变材料的导热系数较小,严重影响了其传热速率和凝固速率。通过对填充石墨泡沫/石蜡的储能系统进行凝固过程的模拟,确定了石墨泡沫对相变储能系统性能的影响。研究结果表明石墨泡沫不仅大大缩短了相变凝固时间,也使储能系统的温度分布更加均匀;通过分析冷却水进口速度和温度对复合相变材料的凝固过程的影响,说明随着冷却水进口速度的增大和温度的降低,传热速率加快,凝固时间缩短。分析了复合材料相变区的自然对流对相变过程的影响,模拟结果证明自然对流能在一定程度上加快相变材料的凝固过程。  相似文献   

5.
石蜡与石蜡/膨胀石墨复合材料充/放热性能研究   总被引:4,自引:0,他引:4  
利用相变材料的充/放热实验台测试石蜡及石蜡/膨胀石墨(质量比分别为93/7及90/10)复合相变材料的充/放热性能。实验表明纯石蜡在充热过程中自然对流是其主要的换热方式,而放热过程中导热是主要的换热方式。在充/放热过程中,石蜡的充/放热效率都较低。而对于石蜡/膨胀石墨复合相变材料,其导热能力较石蜡有很大提高,但由于添加了膨胀石墨而削弱了对流换热,其换热方式是以导热为主。因此,添加膨胀石墨对充热速率提高不多,而对放热速率有大幅度提高。石蜡/膨胀石墨(93/7)复合材料充热过程所用时间为石蜡的62%,放热过程的时间为石蜡的43%。石蜡/膨胀石墨(90/10)复合材料充热过程所用时间为石蜡的52%,放热过程的时间为石蜡的35%。  相似文献   

6.
相变储能是通过相变材料吸/放热过程来实现能量储存的技术,它能够解决热量供需时间、空间和强度上的不匹配,并以其高储能密度成为储能领域的研究热点,但由于相变材料的热导率较低,使其应用受到限制。针对相变储能材料熔化/凝固过程中热导率低引起的传热速率慢的问题,从优化储能设备结构、添加剂提高相变材料热导率以及联合强化传热技术三方面综述国内外相变材料储能强化传热技术的最新进展。通过比较各种强化传热方式的优劣,实验和模拟均显示复合强化传热即可解决相变材料热导率低,又增大传热面积,从而提高相变材料的传热性能;多孔金属作为导热添加剂增强导热效果更好;并提出了相变储能强化传热技术未来需要解决的相关技术难题。  相似文献   

7.
本工作对石蜡(PA)及石蜡/膨胀石墨(97% PA/3% EG和95% PA/5% EG)复合相变储热材料的热性能进行了探究,考察了不同直径储热单元在干燥介质温度为25℃,风速为0.8 m/s条件下的放热性能。结果表明,在石蜡中添加膨胀石墨后,复合材料导热系数较纯石蜡分别提高了178.10%和214.30%,可以有效改善石蜡的导热性能,缩短放热时间;储热单元直径对放热性能有显著影响,随着石蜡相变储热单元直径的增大,放热时间线性增加;膨胀石墨的添加可以明显缩短放热时间,随膨胀石墨含量的增加,相同直径储热单元的放热时间逐渐缩短;膨胀石墨对储热单元放热性能的改善效果随直径变化而不同,在一定范围内随储热单元直径的增大而效果逐渐显著,达到极值后随直径的增大效果逐渐减弱,本实验条件下,最优储热单元直径在35~50 mm之间。结合实际生产需求,最优直径为35 mm。  相似文献   

8.
为提高石蜡作为固-液相变储热材料的导热性能,在石蜡(PW)中掺加高导热系数的碳纳米管(CNTs),制备了碳纳米管-石蜡复合相变材料(PW-CNTs).为进一步增强PW-CNTs的传热性能,通过内置金属网结构,利用金属网的高导热性,加快PW-CNTs作为相变材料的充放热速率.测试了PW-CNTs的熔点和相变潜热,导热系数以及置入金属网前后的充放热时间.结果显示,PW-CNTs的导热系数较石蜡得到显著提高,其中掺加10%(质量分数)CNTs的复合材料的固态,液态导热系数平均分别提高31.4%,40.2%.置入金属网结构后,PW-CNTs的充放热时间至少分别缩短了40.3%和30.2%.此外,碳纳米管在石蜡中易发生团聚沉积,针对这一特点,对PW-CNTs进行了多次热循环,研究了热循环对PW-CNTs导热系数的影响.  相似文献   

9.
石蜡/膨胀石墨复合相变储热材料的研究   总被引:14,自引:0,他引:14  
以膨胀石墨为基体,石蜡为相变储热介质,利用膨胀石墨对石蜡良好的吸附性能,制备出了石蜡/膨胀 石墨复合相变储热材料。由于毛细作用力和表面张力的作用,石蜡在固-液相变时,很难从膨胀石墨的微孔中渗 透出来。实验结果表明,石蜡/膨胀石墨复合相变储热材料没有改变膨胀石墨的结构和石蜡的固-液相变温度, 且其结合了石墨高的导热系数和石蜡大的相变潜热,因而储热密度较高,导热性能好。其相变潜热与对应质量 分率下的石蜡相当,储/放热时间比石蜡明显减少。  相似文献   

10.
以石蜡为相变材料基体、纳米金属铜、镍、铝、铁和锌为导热增强剂、油酸为分散剂,采用超声波震荡法制备纳米金属/石蜡复合相变蓄热材料体系。通过复合蓄热体系的步冷曲线分析,结果显示纳米铁为有效导热增强剂。对不同质量分数纳米铁/石蜡复合相变蓄热体系进行DSC和导热系数测试分析,结果表明:随着纳米铁质量分数的增加,复合材料的导热系数逐渐增大,相变潜热值逐渐降低,相变温度变化不大;纳米铁质量分数为0.1%时,复合材料的固态导热系数可增大2.8倍,相变潜热值下降1.1%。  相似文献   

11.
向相变材料中添加金属泡沫可以解决相变材料低导热率引起的换热效果较差等问题,提高系统的整体蓄热效率。然而,复合相变材料的传热性能受金属泡沫孔隙率分布的影响较显著,为进一步提高相变储能单元的传热性能,本工作基于低孔隙率金属泡沫-相变材料(PCM)复合储能系统,建立了一种新的梯度孔隙率金属泡沫结构,通过数值模拟方法,对蓄热单元熔化过程中的熔化率、储能速率、储能总量进行分析,系统研究了孔隙率沿加热方向负梯度分布、正梯度分布对复合相变材料熔化速度和储热性能的影响。研究结果表明,负梯度孔隙率结构可以进一步提高储能系统的储热效率,其中,孔隙率梯度为0.12(案例S-6)时增强效果最显著。在熔化周期的不同阶段,负梯度孔隙率对复合材料的传热均有不同程度增强,对于S-6,在1000 s、2000 s、2600 s时,熔化率相较于均匀孔隙率结构分别增加了0.67%、2.31%、9.90%;随着孔隙率梯度的增加,相变材料的热性能提高越显著,与均匀孔隙结构相比,改进的负梯度孔隙率结构其完全熔化时间最高可缩短7.32%,储热速率可提高8.02%。对于正梯度孔隙率结构,其对熔化速度没有显著影响,但是储热总量可提高0.49%。  相似文献   

12.
基于六面通圆孔的均匀泡沫金属结构,构建了泡沫金属复合相变材料(PCM)三维模型,采用高性能计算显卡(GPU)加速的多松弛时间格子玻尔兹曼方法模拟了均匀及梯度泡沫金属复合PCM的瞬态熔化过程。结果表明:随着均匀泡沫金属孔隙率的降低,复合PCM的传热速率提高,潜热储能的能力减弱;对于固定平均孔隙率的不均匀泡沫金属,孔隙率沿导热方向上递增的模型具有最佳的强化传热效果,其完全熔化时间比填充均匀骨架模型和孔隙率在导热方向上递减的骨架模型分别缩短了4.2%和25%,当孔隙率梯度变化方向与导热方向一致时,在高温壁面附近填充低孔隙率泡沫金属能显著强化传热;当两者方向垂直时,熔化速率取决于平均孔隙率,与梯度分布几乎无关。  相似文献   

13.
对同心套管换热器内石蜡的储热进行数值模拟,获得了不同热流体进口温度下的相变储热特征规律。结果表明热流体的温度升高导致石蜡融化速度加快,石蜡的融化时间逐渐缩短,其下降速率分别为41%,29%,储能过程储存热量增多。研究发现石蜡融化前传热方式以导热为主,融化过程中对流换热逐渐增强并占据主导地位,导热占据次要地位。提高热流体的入口温度能显著缩短融化时间提高储热效率。文中的模拟结果与文献的实验及模拟结果进行了对比验证,吻合较好,相对偏差不超过20%。  相似文献   

14.
由于相变换热储能技术可以协调能量在时间和空间尺度的分配,成为了目前研究的热点问题。本工作用焓值法分别对充填低温无机盐相变材料的二维和三维管壳式相变储能换热器模型的储/放热特性进行了模拟研究,采用Boussinesq近似研究了液相区密度变化引起的自然对流的影响。研究表明换热器的入口温度对相变换热效率影响显著;在储热过程中自然对流发挥了重要作用,换热效率与液相区的运动状态直接相关,而放热过程中的热交换主要依靠热传导完成;三维模拟的结果表明换热管出口温度与管壁的平均努赛尔数高度相关,且换热管水平放置的换热效率略低于竖直放置。  相似文献   

15.
《太阳能》2016,(10)
以硬脂酸为太阳能中温相变储能材料,建立了相变蓄热装置蓄放热特性测试实验台,对储能单元含有50%和80%相变材料以及纯水的储能箱分别进行3组放热性能实验测试。结果表明,在放热过程中,储能箱在装有相变材料放热时水温波动比纯水放热时的水温波动大,可在一定时间内维持局部温度不变;在储能箱蓄热水温都达到80℃、冷水以1.2 L/min进入储能箱进行缓慢换热时,储能单元含80%相变材料的放热能力最强,储能单元含50%相变材料的次之,纯水的放热能力最弱;在相同储能空间下,相变材料释放的有效能为水的1.62倍。  相似文献   

16.
高杨  何烨  高佳圣  王万权  周艳 《太阳能学报》2022,43(11):406-412
将1.5%石墨烯/石蜡复合相变材料填充到内管形状不同、换热面积相同的套管换热器内,采用数值模拟的方法分析内管形状对石蜡类复合相变材料蓄放热性能的影响。结果表明,异型管能有效提升石蜡复合相变材料的熔化及凝固速率,滴型管外石蜡复合相变材料的熔化速率比椭圆管及圆管分别提高53%、62%,滴型管外石蜡复合相变材料的凝固速率比椭圆管及圆管分别提高6.7%、9.8%。基于场协同原理分析异型管的强化石蜡类复合相变材料的传热机理,由于滴型管能使石蜡类复合相变材料在相变过程中温度场与速度场协同性更高,因此能更有效地提升其相变速率。  相似文献   

17.
根据电子器件散热技术领域对热适应复合材料的性能要求,选取导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,制备出高导热系数和储热密度的热适应复合相变材料.采用扫描电镜(SEM)、差示扫描量热仪(DSC)、偏光显微镜(POM)和Hot Disk热常数分析仪等多种测试技术,对复合相变材料进行分析研究;通过储/放热实验和1000次热循环实验研究了复合相变材料的传热性能和热稳定性.实验结果说明该复合相变材料具有形状稳定、导热率高、储热密度大等特点,并具有良好的热稳定性和使用寿命.  相似文献   

18.
《节能》2021,40(7):24-28
采用焓-多孔介质法,分别对内嵌针状翅片以及填充多孔泡沫金属的相变热沉装置内相变材料的熔化过程进行三维数值模拟,分析不同加热热流、翅片数量、间距、高度对蓄热过程的影响,对比内嵌翅片和填充多孔泡沫金属的热沉装置的蓄热能力。结果表明,随着热流密度的增加,蓄热速率明显加快,蓄热时间缩短。随着翅片数量的增多,相变材料的导热能力得到明显改善。翅片排布过于稀疏或紧密,导热能力的强化效果都不如均匀排布时明显。随着翅片高度的增加,相变材料的导热能力有明显的提升。通过比较发现,多孔泡沫金属对蓄热速率的强化效果比针状翅片更加明显。  相似文献   

19.
针对管壳式相变蓄热器换热速率较慢的问题,建立多管束大空间相变蓄热器模型数值模拟的研究换热管排列方式及翅片参数对换热效果的影响。通过观察温度和速度场、固液相界面、Nu及液相分数与时间的关系,分析蓄/放热传热过程。研究结果表明:采用正三角排列可增强换热管间热扰的影响,提高相变材料(phase change material, PCM)熔化速率;蓄热过程中传热以自然对流为主,放热过程中传热以导热为主;合理调整不同位置换热管节距,可改善蓄热器温度分布均匀性;适当增加翅片数量及高度有利于提高PCM换热速率,蓄热器最佳翅片数量为8组,高度为25 mm。  相似文献   

20.
针对解决太阳能热利用过程中所面临的辐射强度不稳定、不连续和不均匀等关键问题,相变蓄热技术常与太阳能热利用系统耦合协同匹配,以实现稳定连续的热量输出。为了强化固液相变蓄热/放热过程、提高系统热储能效率,对金属泡沫内石蜡类相变材料(PCMs)在不同蓄热流体温度下的固液相变蓄热/放热特性开展了实验研究。设计并搭建了相界面可视化的蓄热/放热实验系统,实验过程中使用高清相机对相变过程中的相界面变化进行了记录。同时,通过在蓄热单元内部布置多个热电偶测点,对蓄热/放热过程中的温度变化规律进行了探究。实验结果表明,受自然对流影响,熔化过程中相界面由上至下变化;而凝固过程中由于初始时蓄热单元下部温度较低且存在自然对流,此时相界面自下而上变化。蓄热流体温度越高,熔化所需时间越短,与蓄热流体温度为65℃的工况相比,蓄热流体温度为85℃、80℃、75℃、70℃工况的完全熔化时间分别减少了56.0%、46.7%、15.4%和26.7%。当采用不同温度的流体进行蓄热工况时,相变材料内部温度呈现出具有明显差别的温升规律。尽管如此,当采用相同温度的换热流体进行放热工况时,相变材料的放热温度仍趋于一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号