首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对内径为6 mm,壁厚为2 mm的太阳能热发电用金属管式承压空气吸热器的热性能进行了实验研究,分析了太阳法向直接辐照度(DNI),金属管式承压空气吸热器内空气质量流量对该吸热器出口空气温度的影响。实验结果表明:在空气质量流量相同的条件下,DNI越高,金属管式承压空气吸热器出口空气温度越高,该吸热器获得的热功率越大,吸热器内空气粘性越高,吸热器内空气压力损失也越大;随着金属管式承压空气吸热器内空气质量流量逐渐减小,该吸热器出口空气温度逐渐升高;随着金属管式承压空气吸热器内空气质量流量逐渐增大,该吸热器内空气压力损失逐渐增大;金属管式承压空气吸热器热效率受DNI和空气质量流量的综合作用,且该吸热器热效率的最大值出现在DNI较低处;当金属管式承压空气吸热器内空气压力损失较大时,应增大吸热管的管径或缩小吸热管单管的管长。  相似文献   

2.
建立了球形腔式吸热器三维模型;以基于蒙特卡罗光线追迹法(MCRT)进行光学模拟得到的能流分布,作为吸热管壁的热边界条件;通过数值模拟研究球形吸热器的耦合传热问题;探讨吸热流体入口参数对热性能的影响。研究表明:吸热管壁的辐射能流密度分布不均匀;在相同条件下,下入口吸热器的热性能优于上入口吸热器;在吸热流体的入口速度为0.2~0.4 m/s,提高流速可明显增大吸热器热效率,入口速度大于0.6 m/s时,热效率的增大速率变得平缓;随入口温度升高,热效率几乎呈线性下降。基于非均匀热流边界条件下的吸热器三维数值模拟结果更符合实际情况,为吸热器的优化设计与推广应用提供依据和参考。  相似文献   

3.
一种新型腔式吸热器的设计与实验研究   总被引:4,自引:0,他引:4  
根据碟式聚光镜聚光后的焦平面处辐射能能流分布图以及关键尺寸对各种热量损失的影响,设计出一种新型高效腔式吸热器,专门用于太阳能中高温热利用与热发电。利用数学模型模拟出吸热器的热效率,并运用实验手段加以论证。计算与实验结果表明,该吸热器热效率在内部壁面温度达到400℃,热效率能达到85%以上,且工作性能稳定,完全达到预期的设计要求。  相似文献   

4.
利用蒙特卡洛光线追踪法分析了6种不同开口比(D/d)的球形腔式吸热器的光学性能,并以光学模拟所得壁面能流作为热分析的边界条件导入CFD软件中,运用CFD软件对6种不同开口比的球形腔式吸热器进行流固耦合传热计算,获得了球形腔式吸热器和内部流体的温度场分布。通过计算球形腔式吸热器的反射光损失、对流热损失和热辐射损失,得到聚光器/球形腔式吸热器系统的光热转化效率为81.9%~84.4%,球形腔式吸热器的最佳开口比1相似文献   

5.
针对太阳能碟式聚光器,设计了一种工质为超临界二氧化碳的圆台形腔式吸热器,建立了腔式吸热器的光热模型。采用蒙特卡洛光线追踪法分析了腔式吸热器的光学特性,并基于相关理论,将热边界条件导入Ansys Fluent软件中,对腔式吸热器的光学特性及流动传热特性进行了计算流体力学(CFD)仿真模拟,得到腔式吸热器内工质出口温度、工质流动压降、光学效率、热效率以及散热损失随着工质进口温度(100~200℃)和太阳光辐射强度(400~1 200 W/m2)的变化规律。结果表明:不同太阳光辐射强度下,吸热器的光学效率基本不变;太阳光辐射强度对腔式吸热器热效率的影响不明显;工质进口温度越高,吸热器的热效率越低;腔式吸热器散热损失中,自然对流散热损失最大,其次是辐射散热损失及导热散热损失。  相似文献   

6.
利用直接蒸汽发电(DSG)集热器传热特性与水动力特性耦合建立了HHC稳态模型,并利用所建模型对DSG集热器的稳态特性进行了仿真分析,得到了在太阳直射辐射强度(DNI)、工质质量流量、入口工质温度和入口工质压力变化时,DSG集热器出口参数的一系列重要变化规律.并与文献的实验数据以及其他文献所建模型计算结果进行了对比.结果表明:为保证DSG集热器正常运行时其出口工质处于干蒸汽区且出口温度在合理范围内,DNI需要大于一定阈值,并留有一定阈度,工质质量流量需设定在一定范围内,且可选范围较小,而入口工质温度、压力在较大范围内都能满足要求;通过实验数据与模型计算结果的对比,验证了所建模型的正确性和精确性.  相似文献   

7.
太阳能热发电系统中聚光、集热协同进行,聚光太阳能能流极不均匀,对能量转换效果有较大影响。为避免太阳直射辐照度的变化对实验结果的影响,采用碟式聚光器和圆柱型接收器,搭建了两套结构一致的实验系统,同时开展聚光和集热实验,提高了实验数据的准确度。接收器采光口能流分布是聚光和集热效率研究的基础,利用水冷式能流密度传感器,在接收器集热实验时同步测量了接收器采光口能流密度分布,通过面积剖分,得到接收器入射能流。开展集热实验,分析了太阳能直射辐照度和工质流量变化对系统集热效率的影响。研究结果表明:随直射辐照度增加,系统入射功率、输出功率和接收器采光口截获功率不断增加,但上升趋势逐渐变缓;聚光器聚光效率、接收器热效率、系统总热效率均呈下降趋势,且斜率逐渐变缓;随着传热工质流量增加,接收器腔内壁面温度下降且温度场梯度变小,减少了接收器热损失,系统输出功率不断加大,总热效率不断提高。  相似文献   

8.
应用ANSYS建立以超临界CO_2为循环工质的螺旋管腔式太阳能吸热器的热-力耦合模型,得到不同能流分布形式下的温度场和应力场。依据Mendelson-Roberts-Manson方法,研究不同能流分布对吸热管预期使用寿命的影响。研究表明,能流分布形式对吸热器温度和应力分布及其使用寿命影响显著。在保持系统吸收总能量不变的情况下,吸热器表面局部能流越大,其局部温度越高,局部蠕变损伤加剧,影响系统使用寿命;局部能流梯度越大,其热应力越大,加剧局部蠕变破坏,影响其使用寿命。  相似文献   

9.
介绍了一种应用于塔式太阳能热发电站的腔式高温空气吸热器,建立了吸热器内部空气流动及传热过程模拟数学模型,并通过数值方法,模拟了吸热器内部的空气流场和温度场。结果得知:空气进入吸热器后,沿内壁面轴向高速流动,随着深度的增加,速度越来越小,到达底部时速度最小;在压差的作用下,进入吸热器内部的空气会不断流向和冲刷针肋及壁面,而主流方向的流量不断减少;空气通过冲刷高温针肋及壁面不断吸收热量,温度不断升高;由于吸热器底部空气速度较小,对流换热系数较小和热流密度较大,因此该处温度较高,是整个吸热器的最脆弱部位;在高辐照强度情况下,虽然加大空气流量可降低吸热器壁面的温度,但由于其对流换热系数与空气流速不成正比例,壁面温度一般还会有所升高。  相似文献   

10.
太阳能颗粒幕吸热器可以利用自由下落颗粒直接吸收聚集的太阳辐射能。文章基于离散相模型(DPM)和离散坐标辐射模型(DOM),在颗粒幕入口厚度为10~50 mm的5种工况下,对带有石英玻璃窗的颗粒幕吸热器进行三维数值模拟,分析了颗粒相与流场之间的气固耦合作用和颗粒辐射对吸热器整体辐射场的影响。模拟结果表明:带有石英玻璃窗的颗粒幕吸热器可以有效增加吸热器的光热转化效率、降低对流热损失和吸热器空腔内壁面再辐射热损失;在相同颗粒质量流量下,颗粒幕厚度对颗粒幕流动形态和温度分布存在不可忽略的影响;吸热器出口处颗粒的平均温度达到1 120 K以上,吸热器的光热转化效率达到0.65以上;随着颗粒幕入口厚度的增大,吸热器出口处颗粒的平均温度和吸热器的光热转化效率呈现先增大后减小的变化趋势,在颗粒幕入口厚度为30 mm时,吸热器出口处颗粒的平均温度和吸热器的光热转化效率最高,分别为1 128.5 K和0.664。  相似文献   

11.
《动力工程学报》2017,(4):313-320
针对一种新型两段式塔式太阳能热发电的吸热器进行几何设计,建立了呈高斯分布热流密度的条件下吸热器辐射和对流换热以及流动模型,确定了吸热器I和吸热器II受热面蛇形管管道布置方式和几何尺寸,获得了吸热器内部不同位置受热面的热流密度分布情况.结合气液两相传热和流动特点确定了吸热器典型管道内部工质温度、干度、压降和沿管道流程的壁温分布规律.得出两段式塔式太阳能腔式吸热器几何结构的系统化设计流程,并对吸热器进行了热力性能分析.结果表明:两段式塔式太阳能腔式吸热器能够有效减小预热蒸发吸热器的几何尺寸,提高平均辐射热负荷的同时降低吸热器的平均温度,有效提高吸热器的热效率;多管程蛇形管道布置可使出口参数分布更加均匀,避免受热严重不均等安全问题.  相似文献   

12.
提出一种三角形腔体接收器应用到抛物碟式聚光系统,实现腔体接收器底部吸热器表面的能流均匀化。基于OptisWorks光学软件研究三角形腔体接收器的截面尺寸、腔体高度、腔体侧壁面的反射特征(镜面反射或漫反射)和反射率等对其光学性能的影响。光学性能指标包括腔体接收器的光学效率、吸热器表面的能流非均匀因子及其接收的总太阳辐射能。分析聚光器的扇形缺角、正方形聚光器和跟踪误差,以及三角形截面和腔体底部的裁剪对接收器光学性能的影响。结果表明,腔体接收器的壁面反射特征和反射率对其光学性能影响显著,提高腔体侧壁面的反射率和选择镜面反射材料能使吸热器获得更多的太阳辐射能。在腔体截面尺寸和壁面反射特征一定时,总存在一个较佳的腔体高度使吸热器表面的能流非均匀因子减小到0.1以下。此外,将三角形腔体裁剪成六边形或正六边形截面时也能获得均匀的能流分布。该文研究为吸热器表面能流均匀化提供了一种新的解决方案,可应用于碟式聚光集热和碟式聚光光伏领域。  相似文献   

13.
提出一种适用于抛物槽集热器的新型太阳能腔式吸热器,该装置具有较高的集热效率,同时连接安装和日常运行维护也相对便利。对其建立一套三维传热模型,并搭建采用新型腔式吸热器的抛物槽集热器实验系统,通过实验测试对比吸热器瞬时效率,验证模型的准确性。此外,定量分析不同环境参数与工作参数对新型腔式吸热器热性能的影响,结果表明:集热效率随着法向直接日射辐照度、环境温度的升高而增加,随着环境风速和吸热器入口传热流体温度的升高而降低,而受传热流体质量流量的影响较小。  相似文献   

14.
该文研究设计制作了平顶锥形吸热器,安装在一部盘式聚光系统上,利用水作工质,进行了热性能实验研究.按照定流量、变流量及当地天气情况,测试了一段时间内吸热器进出口的温度变化,分析了吸热功率和热效率.实验显示,当太阳直射辐射的辐照度升高,不论是定流量还是变流量状态,吸热功率变化趋势相同(均增加);热效率变化趋势则不同,定流量状态下降低,变流量状态下升高.研究表明,利用盘式聚光系统通过吸热器对水进行加热,所涉及的太阳直射辐射辐照度和工质状态是影响盘式聚光系统吸热器的吸热功率和热效率的重要因素.以上研究,对太阳能中高温利用及实际研发一套盘式太阳能热发电系统有一定参考作用.  相似文献   

15.
吸热器是碟式太阳能热发电系统中集热系统的关键部件,为了探究环境因素对吸热器热性能的影响,利用光线追踪和数值计算的方法,在考虑环境风的情况下,对腔式吸热器进行了不同工况时的热性能模拟,讨论分析了太阳高度角、环境风风向、风速及传热工质进口状态对腔式吸热器热性能的影响。结果表明:太阳高度角越小,腔式吸热器对流热损失越大;随着环境风风向角的增大,无论风速如何,腔式吸热器的热损失都呈现先减小后增大的趋势,当风向角为135°时的热损失最小,风向角小于45°时的热损失较大;任何风向下,腔式吸热器的热损失都随着环境风风速的增大而增大,且在0°和45°风向角下,腔式吸热器对于风速变化较为敏感;传热工质进口流量的增加会提升腔式吸热器的热性能,进口温度的提高则会降低腔式吸热器的热性能,且对其影响的规律呈线性。  相似文献   

16.
为减少塔式太阳能吸热器在高温下快速增加的辐射热损,基于聚光太阳辐射的空间分布不均匀特性,提出并优化一种在吸热器表面不同入射能流区域采用不同光谱选择性吸收涂层的多区域涂层设计方法,并与均一选择性吸收涂层和传统灰体涂层吸热器进行热损性能、全天适应性和全年性能的对比分析。结果表明:在中国帕里地区,吸热器进口温度为290 ℃、出口温度为800 ℃的条件下,多区域涂层对比传统灰体涂层和均一选择性吸收涂层吸热器在典型日12月21日中的辐射热损分别降低89.8%和75.7%,总热损分别降低63.9%和38.5%;全年光热转换效率可分别提升8.1%和2.4%。  相似文献   

17.
吸热器是塔式太阳能热发电站的核心设备,但云层短时间的遮挡和离开会使吸热器接收的太阳直接辐射(DNI)发生随机波动,造成吸热器表面受热发生剧烈变化,会影响塔式太阳能热发电站的安全运行.本文提出了一种基于极值梯度提升(eXtreme Gradient Boosting,XGB)算法及全天空成像仪图像的超短期DNI预测方法....  相似文献   

18.
该文研究太阳光照条件、环境温度、风速、风向等因素对塔式太阳能热发电熔盐吸热器整体热效率和散热损失的影响规律,讨论吸热器的运行策略及其对系统效率的影响.吸热器的运行受风速和入射能量的影响较大,受风向和环境温度的影响较小.额定出口温度模式下,当风速超过7m/s时,对流散热损失超过辐射散热损失.风速对吸热器局部对流散热损失的...  相似文献   

19.
热管式吸热器单元热管传热的数值模拟分析   总被引:1,自引:1,他引:1  
热管式吸热器的热性能分析对吸热器设计有着重要意义,但由于其相变过程与热管传热的耦合作用十分复杂,至今仍是很少有人深入研究的领域。本文基于焓法建立单元热管耦合传热的物理和数学模型,模拟计算了热管壁温、蓄热容器壁温、循环工质出口温度及相变材料熔化率等参数,并与基本型吸热器进行比较,验证了热管吸热器明显改善了温度分布的均匀性和相变材料的熔化率。  相似文献   

20.
文章基于菲涅尔高倍聚光PV/T系统,采用螺旋式微通道散热器对太阳能(砷化镓)电池进行冷却,针对砷化镓电池表面能流分布不均问题进行了研究,并选用直接导入法,重点研究了均匀和非均匀热流密度及不同直射辐照度(DNI)下散热器的换热特性。结果表明:经过均光作用后,电池上表面热流密度分布均匀,且中心位置的热流密度相对较高;非均匀热流条件下,电池表面四周热流密度低于中心,其传递的热量低于均匀条件下,电池上表面的热流密度分布越均匀,散热器中传递的热量越多;为获得可提供膜蒸馏热源(65~70℃)的出口流体,不同太阳直射辐照度存在对应的最佳入口流速,若使冷却结构的强化传热因子达到最大,流体入口流速应随着太阳直射辐照度进行耦合匹配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号