共查询到19条相似文献,搜索用时 59 毫秒
1.
2.
3.
高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。 相似文献
4.
由于锂离子电池本身复杂的老化特性,准确预测电池的健康状态和剩余寿命是一个尚未解决的挑战,这限制了消费电子、电动汽车和电网储能等技术的发展.电池的老化机制复杂且相互耦合,难以采用基于模型的方法进行准确的建模.本工作提出了一种基于数据驱动的锂离子电池容量估计方法,通过分析电池的电压-放电容量曲线随循环老化的演变模式,提取具有电化学意义的特征,采用高斯过程回归(Gaussian process regression,GPR)对电池的容量进行预测.该模型的输入特征可以在线获取,不需要对电池进行完整的充放电循环即可估计容量.在钴酸锂电池和磷酸铁锂电池数据集上分别进行了实验验证,结果表明该方法具有较好的泛化能力,对不同类型的电池均能实现准确的容量估计.将本文的方法与阻抗谱作为输入的GPR模型进行对比试验,结果表明该特征能获得更好的估计精度.这一结果说明了合适的特征选择能显著影响锂离子电池的数据驱动模型性能,为电池的状态预测与诊断提供了参考. 相似文献
5.
6.
7.
根据风电机组的运行原理,对运行数据中记录的塔架振动特征进行分析,发现塔架振动与风电机组数据采集与监视(SCADA)系统记录的多个其他变量存在密切关系,针对风电机组运行数据强随机性和高噪声的特点,采用高斯过程回归方法建立了描述塔架振动与相关变量关系的振动模型,并对该模型进行了验证.结果表明:通过分析塔架模型残差可以实现叶轮桨距角不对称故障的监测和诊断,证明塔架振动监测的有效性. 相似文献
8.
锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,HIs)和高斯过程回归(Gaussian process regression,GPR)相结合预测锂电池SOH的机器学习模型。首先,通过分析锂电池放电过程,提取若干易于获得且适合动态操作的直接外部特征作为间接健康指标,并计算它们和SOH的相关性,最终筛选出平均放电电压、等压降放电时间、最高放电温度和平台期放电电压初始骤降值作为健康指标;其次,以上述健康指标作为输入特征,利用GPR算法建立锂电池退化模型,对NASA锂电池数据集进行预测,平均绝对误差(mean absolute error,MAE)不超过2%,均方根误差(root mean square error,RSME)控制在4%之内;最后,将本工作模型与其他常用机器学习模型进行比较,再将模型带入不同实验条件的电池中进行泛化性能分析,最大预测误差控制在6%之内,实验结果表明,本工作提出的间接健康指标和GPR模型具有相对较高的预测精度和优秀的泛化能力。 相似文献
9.
基于高斯过程回归和粒子滤波的短期风速预测 总被引:2,自引:0,他引:2
建立高斯过程回归和粒子滤波相结合的短期风速预测模型,实现对历史风速序列异常值的在线动态检测与修正。首先,在训练样本集中通过高斯过程回归建立状态空间方程,采用粒子滤波算法对当前量测值进行状态估计,对估计值和量测值的残差进行分析,并根据"3σ"原则判断异常值。其次,修正异常值,并对修正后的风速序列重新建立高斯过程回归预测模型。在进行提前15分钟风速预测时,同样采用粒子滤波算法对最新量测值进行状态估计,实现了异常值在线检测并修正。算例分析结果表明,粒子滤波算法能够有效检测出异常风速值,降低了风速预测误差,提前15分钟风速预测时平均绝对百分比误差和均方根误差分别降至8.92%和0.5826 m/s。 相似文献
10.
电化学阻抗谱(electrochemical impedance spectroscopy,EIS)蕴含丰富的电池健康状态(state of health,SOH)信息,但不同频率的电化学阻抗数据间并不相互独立,直接利用全频段EIS数据构建SOH估计模型,往往存在精度低、计算复杂度高等问题。鉴于此,本文提出了一种基于特征选择和高斯过程回归的SOH估计方法,可通过序贯前向搜索策略,结合交叉验证均方根误差指标,逐步搜索阻抗特征子集。基于此,采用基于水平图的多目标可视化决策方法,以均衡模型复杂度与精度为目标,综合考虑特征个数与交叉验证均方根误差,实施阻抗特征子集优选。所提方法已成功地应用于公开发表数据集。相比全频段EIS建模方法,本文作者所提方法可显著提升SOH估计精度,大幅降低EIS测试时间,为电化学阻抗技术应用于SOH在线估计提供理论和技术支撑。 相似文献
11.
12.
准确估算荷电状态(SOC)可以为电池之间的均衡管理提供依据,延长锂电池组整体的使用寿命.针对中心差分卡尔曼滤波算法(CDKF)存在较大线性误差的问题,提出一种改进的CDKF算法.在原算法中引入迭代滤波思想,多次利用测量信息更新状态量估算值,使得观测信息不断迭代更新,基于LM优化方法不断修正协方差矩阵,有效减小了线性误差.首先基于二阶阻容(RC)电路单元模型,选择最小二乘参数辨识方法,辨识出模型阻容参数;然后进行HPPC实验,验证电池等效模型的准确性;最后分别在恒流放电和动态工况下应用改进后的CDKF算法对电池SOC和电压进行估计,并将估计结果与CDKF算法进行比较.两种工况下验证结果表明改进后的CDKF算法精度更高,SOC估计精度可提升1.16%,最大估计误差小于1.7%,算法收敛时间也比原算法短,改进后的CDKF算法在估计精度和鲁棒性方面均有所提升,更具有应用优势. 相似文献
13.
This paper proposes a model-based and data-driven joint method to estimate the state of health of Li-ion batteries. To accurately quantify battery degradation, a novel resistance-based aging feature is defined from the Thevenin model, and the defined aging feature is approximately linear with capacity degradation. An orthogonal experimental design and a two-way analysis of variance are used to validate the robustness of the defined aging feature. Considering the influence of temperature on battery performance, Box-Cox transformation is introduced to improve the aging feature linearity at low temperatures. Then, an estimator for state of health is established by using Gaussian process regression. Battery aging experiments are conducted to illustrate the estimation effect of the proposed method. The experimental results show that the proposed method has high estimation accuracy at different temperatures. Using the same aging feature, the backpropagation network and support vector regression are implemented to verify the generality of the estimation framework. 相似文献
14.
15.
锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义.提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性.以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算.实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度.主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算. 相似文献
16.
17.
在使用神经网络方法估计锂电池荷电状态时,传统荷电状态适应度评价函数存在仅考虑均方误差等网络权值参数的缺点,忽略了拓扑参数对模型的影响.故本文提出在适应度评价函数设计中综合考虑输入/输出时序相关性、隐层神经元数量等模型拓扑参数和网络权值参数的加权影响,并将其引入带外部输入非线性自回归神经网络建模方法的锂电池荷电状态估计中,进而基于改进天牛须搜索算法实现了上述模型拓扑参数与网络权值参数的协同辨识优化.仿真结果表明,本文所提出方法能够提高多种复杂工况下的锂电池荷电状态估计精度,在DST标准工况和WLTC标准工况下锂电池荷电状态的均方根误差分别达到3.38×10?3和8.75×10?4,相比于未经改进的天牛须搜索算法优化NARX神经网络在均方根误差上估计精度分别提升了42.4%和20.5%. 相似文献
18.
电池荷电状态(SOC)的准确估计是电池管理系统的关键问题,对电池的可靠性和安全性至关重要。由于多数情况下建立的电池模型精度不够高、电池系统的噪声统计是未知的或不准确的,这都会对锂离子电池系统的SOC估计会产生较大影响。本文采用二阶RC等效模型,可减小电池模型带来的误差;同时结合SageHusa滤波算法与无迹卡尔曼滤波(UKF)算法提出了一种新的SOC估计方法,基于噪声统计估计器的自适应无迹卡尔曼(AUKF)滤波算法,它可以对系统噪声进行实时修正以提高SOC的估算精度。并通过比较AUKF和UKF来验证SOC估计方法的准确性和有效性。实验结果表明,AUKF具有更高的SOC估计精度和自适应能力,在脉冲放电工况和动态工况下的估计精度均能保持在4.68%以内,可以有效地估计电池的SOC值。 相似文献