首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of concentration and molecular weight of oat β‐glucans on properties of soya bean protein isolate (SPI) thermal gels prepared by heating at 90℃for 30 min were investigated. Compared with control (free of β‐glucan) formulations, the presence of β‐glucans (0.5–1.5%, w/v) largely enhanced storage modulus (G′) and texture properties of SPI (12%, w/v) thermal gels measured by dynamic oscillatory rheometry and texture profile analysis, which were developed as increasing β‐glucan concentration and molecular weight. It is possible that β‐glucans could cause the formation of protein aggregates to produce gels through hydrophobic interactions. Mixed gel systems at low ionic strength showed higher G′ resulting from the lower denaturation temperature of SPI, which was beneficial to the formation of gel structure. In addition, although adding a certain amount of β‐glucan into SPI reduced water‐holding capacity of mixed gels, high molecular weight of β‐glucan improved their water‐holding capacity compared to control formulations attributed to the improvement of the structural integrity of the mixed gel network.  相似文献   

2.
Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large‐size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium‐size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications.  相似文献   

3.
Heat-induced gels of 11S globulin (11S) or soybean protein isolate (SPI) were prepared using magnesium chloride (MgCl2) as a coagulant. Viscoelastic properties and microstructures of 11S and SPI gels were quantified using dynamic viscoelastic measurement (DVM) and confocal laser scanning microscopy (CLSM). The addition of sodium chloride was necessary for 11S and SPI to form MgCl2-induced gels. DVM indicated that 11S formed stiffer and more solid gels than SPI under all experimental conditions. CLSM showed that the microstructures of 11S gels were coarser and more heterogeneous than SPI gels in comparable conditions. The microstructures of 11S gels were highly affected by MgCl2 concentration whereas those of SPI gels were relatively insensitive to MgCl2 concentration. The microstructures of 11S and SPI gels were analyzed by two parameters: the fractal dimension and the average density of gel networks. Compared to SPI, 11S forms MgCl2-induced gels with a lower fractal dimension and a higher density of network structures.  相似文献   

4.
BACKGROUND: In recent years inulin‐type prebiotics have attracted much attention due to consumers' awareness of the health benefits of functional foods. Currently no information is available about the possible texture‐modifying effect of these non‐ionizable polar carbohydrates in different soy‐based food systems. In this study, the effect of inulin/oligofructose on the cold aggregation and gelation of preheated soy protein isolate (SPI) and its fractions (7S, 11S, and their mixture), induced by glucono‐δ‐lactone (GDL), were evaluated by turbidity (A600) and dynamic rheological measurements. RESULTS: Oligofructose significantly delayed the aggregation of all protein samples and decreased the end‐point optical density of 11S fraction and SPI. Inulin, a long‐chain fructan, only delayed the aggregation of 7S globulin and reduced the capacity of aggregation (A600) of SPI. While oligofructose showed no significant effect, the addition of 5% (w/v) inulin enhanced the gelation of SPI and the 7S/11S mixture, which was demonstrated by the increase in gel storage modulus up to 13.6% and 10.1% (P < 0.05), respectively. CONCLUSION: Inulin was found to enhance the viscoelastic properties of GDL‐induced cold‐set soy protein gels. It is expected that ‘functional’ cold‐set gel products with improved texture can be prepared from preheated soy proteins and inulin. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The storage modulus (G′) and gel hardness of non-heated and heat-treated SPI at neutral pH and those of subsequently formed GDL-induced gels were measured. The values obtained for acid-induced gels formed by heat-treated SPI were significantly increased compared to those formed by non-heated SPI. The physicochemical properties of non-heated SPI and heat-treated SPI at pH 6.9 (denaturation degree, dispersibility, water-holding capacity, sulfhydryl groups and surface hydrophobicity) were measured to correlate their effects to gel strength and gel hardness, sulfhydryl groups and water-holding capacity of GDL-induced gels.  相似文献   

6.
The influences of okara on the gelling and secondary protein structure of soya protein isolate (SPI) were investigated. Okara was ultra‐refined by high‐pressure homogenisation. The resulting particle sizes and microscopic morphologies were determined using a laser particle size analyser and a confocal laser scanning microscope, respectively. After okara homogenisation, surface area average particle size (D32) decreased from 49.68 to 23.29 μm and volume average particle size (D43) decreased from 118.94 to 55.08 μm. Dynamic rheological measurements showed that the storage (G′) and loss (G′′) moduli of SPI gelled in the presence of okara were mostly higher than those of SPI gels alone and were increased as the okara amounts increased. Linear law analysis revealed that SPI–okara gels were weak gels and frequency independent. Fourier transform infrared spectroscopy showed that okara and transglutaminase influenced the prevalence of α‐helices, β‐turns, β‐sheet and random coils.  相似文献   

7.
Effects of protein oxidation on thermal aggregation and gel properties of soy protein by 2,2′‐azobis (2‐amidinopropane) dihydrochloride (AAPH)‐derived peroxyl radicals were investigated in this article. Incubation of soy protein to increase concentration of AAPH resulted in a decrease in particle size and content of thermal aggregates during thermal‐induced denaturation. Protein oxidation resulted in a decrease in water‐holding capacity (WHC), gel hardness and gel strength of soy protein gel. An increase in coarseness and interstice of the gel network was accompanied by uneven distribution of interstice as extent of oxidation of soy protein increased. A decrease in disulphide content and formation of oxidation aggregates in the process of oxidative modification were contributed to the decline of particle size and content of thermal aggregates during thermal‐induced denaturation, leading to a decrease in WHC, gel hardness and gel strength of soy protein gel.  相似文献   

8.
The effect of limited hydrolysis was investigated on the physico‐chemical properties of soy protein isolate–maltodextrin (SPI‐Md) conjugate. The hydrolysates at a degree of hydrolysis (DH) of 1.8% showed much higher surface hydrophobicity (H0; 71.39 ± 3.60) than that of the SPI control (42.09 ± 2.17) and SPI‐Md conjugates (53.46 ± 2.74). Intrinsic fluorescence analysis demonstrated the unfolding of protein molecule and exposure of hydrophobic groups of SPI‐Md conjugate hydrolysates. As evidenced by far‐UV circular dichroism (CD) spectroscopy, the limited hydrolysis increased the unordered secondary structures of SPI‐Md conjugates. The denaturation temperature (Td) of SPI‐Md conjugate was significantly increased by subsequent limited hydrolysis from 102.53 ± 0.60 °C to 108.11 ± 0.61 °C at DH 1.8%. In particular, the emulsifying activity index (EAI) was improved notably after limited hydrolysis of DH 1.8% (147.76 ± 4.39 m2 g?1) compared with that of native SPI (88.90 ± 1.44 m2 g?1) and SPI‐Md conjugate (108.97 ± 1.45 m2 g?1).  相似文献   

9.
ABSTRACT:  The effect of calcium and high-pressure (HP) treatment on the heat gelation of soybean proteins was investigated. In the presence of calcium (2 to 25 mM), the gelation of dispersions of soybean protein isolate (SPI), a β-conglycinin-enriched fraction (7SEF), and a glycinin-enriched fraction (11SEF) started with protein having a lower degree of denaturation. The gels from these dispersions had greater stiffness than the samples without added calcium. HP treatment had different effects on heat-induced gelation depending on the presence of calcium and on the nature of the proteins. In the absence of calcium, gels with low stiffness were formed after HP treatment, compared with untreated samples, and regardless of the sample type (SPI, 7SEF, 11SEF). In the presence of calcium, gel stiffness was increased after HP treatment of dispersions containing β-conglycinin (SPI and 7SEF), while the opposite effect was observed for 11SEF. In the presence of calcium, HP treatment promoted a greater contribution of hydrophobic interactions in SPI and 7SEF. In the dispersions containing β-conglycinin, these conditions also promoted the appearance of a heterogeneous distribution of molecular sizes, from enormous aggregates to dissociated species. Our results suggest that, in the presence of calcium, HP treatment has an opposite effect on the ability of glycinin and β-conglycinin to participate in the formation of a 3-dimensional network upon heating.  相似文献   

10.
将大豆分离蛋白经不同的变性温度及变性时间处理后,与鲢鱼肌原纤维蛋白以不同的比例混合制备热诱导凝胶。通过测定混合蛋白体系的凝胶强度及保水性,分析热变性大豆分离蛋白对混合凝胶特性的影响。结果表明,热变性后的大豆分离蛋白可以改善混合蛋白凝胶体系的凝胶强度及保水性,其中,大豆分离蛋白经过100℃变性180 min后,二者以1∶4的比例混合,得到的混合凝胶强度及保水性最佳。  相似文献   

11.
The effects of combined two heating steps with low (LT, 60 °C for 1 h) and ultrahigh (UHT, 130 or 140 °C for 4 s) temperatures on the thermal gelation of soy protein isolate (SPI) were studied. UHT pretreatments significantly increased protein solubility and enhanced the gelling potential of SPI. Yet, the two‐stage preheating treatment with LT and then UHT‐130 °C had a most remarkable effect: the gel strength of the SPI60+130 sample was, respectively, 1.45‐, 1.64‐ and 3.19‐fold as strong as those of SPI60, SPI25+130, and SPI25. In comparison with single LT or UHT treatments, this two‐stage heating also produced greater amounts of soluble protein aggregates stabilised predominantly by disulphide bonds and hydrophobic forces, contributing to the improved gel network structure.  相似文献   

12.
Fang  Zhong  Xin  Yang  Yue  Li  Charles F.  Shoemaker 《Journal of food science》2006,71(5):E232-E237
ABSTRACT:  The gelation of soy peptides produced by the action of papain enzymes on soy glycinin (11S) dispersions (4.7% w/v) was investigated. Cation-exchange chromatography was used to fractionate crude papain. The nonbinding fraction showed no gel-forming activity on the 11S dispersion. Two binding fractions showed gel-forming activity, and the gel strength of both 11S gels was similar. The activity of the crude papain on 11S dispersions produced a slightly stronger gel than one formed with either of the 2 binding fractions. With the crude papain, the rate of gel formation appeared to be strongly influenced by the enzyme concentration, but the maximum gel strength was independent of enzyme concentration. When the temperature was increased, the papain treatment of 11S soy protein produced weaker gels when the measurement was made at the temperature of formation. This dependence of maximum gel strength on temperature was found to be a function of only the measurement temperature and not the gel formation temperature. The degree of protein hydrolysis at maximum gel strength was similar (∼6%) for the gels formed at different temperatures. When the temperature was increased, the elastic modulus G', the viscous modulus G", and the degree of viscoelasticity (G"/G') decreased. This suggested that the gels were formed the by hydrophobic interactions among the peptides. This observation was supported by particle size measurements on samples of gels which were mixed with reagents known for their ability to disrupt hydrophilic/electrostatic, hydrophobic, or disulfide interactions.  相似文献   

13.
为探讨超声波对大豆分离蛋白(soybean protein isolate,SPI)结构及大豆分离蛋白形成谷氨酰胺转氨酶(transglutaminase,TG)改性凝胶的影响,研究了超声波处理前后大豆分离蛋白平均粒径、溶解性、表面疏水性、二级结构、微观结构及凝胶特性的变化规律。结果表明:超声波处理使大豆分离蛋白平均粒径减小,溶解性增加,表面疏水性增强,α-螺旋含量降低,无规卷曲含量升高,β-折叠和β-转角无显著变化;超声波处理可以促进大豆分离蛋白形成结构均匀、致密的TG改性凝胶,最佳处理时间为60 min,此时凝胶强度为146.57 g,提高幅度达62.12%,持水性为94.27%,提高幅度为3.66%。相关性分析表明,大豆分离蛋白的溶解性以及其形成TG改性凝胶的凝胶强度、持水性与平均粒径有显著的负相关性。  相似文献   

14.
Reformulation of traditional food systems to introduce new ingredients may change their structure and perceived texture. Interactions between proteins and starch during processing can markedly influence starch gel network structure and rheological profile. The present work aimed to study the effects of soybean protein and the products of enzymatic modification on the pasting and rheological profile of corn and cassava starch. The behavior of those protein‐enriched gels during storage was also assessed. Soybean protein isolate (SPI) was incubated with endopeptidase (AL) or food grade microbial transglutaminase (TG). Pasting and rheological behavior, water retention capacity, and structure of protein– and hydrolyzed protein–starch gels were analyzed. Protein incorporation increased the viscosity of starch suspension during and after heating. SPI‐modified proteins increased peak viscosity. Only the structural modifications brought by TG on SPI increased the final viscosity during starch pasting and the storage modulus (G′). This modulus (G′) of the gelled systems decreased with the addition of AL‐treated protein isolate. Light and fluorescence microscopy showed that SPI formed a continuous phase, like a network, in the gelled system. Different network structures and rheological properties can be obtained when SPI are modified by protease and TG enzymes, which may be very useful for designing new food products.  相似文献   

15.
酶法改性能够有效提升大豆蛋白的凝胶性。为了探讨谷氨酰胺转氨酶(transglutaminase, TGase)预交联对盐诱导大豆分离蛋白凝胶性的影响,通过控制酶浓度、预交联时间制备不同预交联程度的大豆分离蛋白(soy protein isolate,SPI)溶液,并研究其在CaSO4作用下的成胶性能。结果显示,与未经TGase处理的SPI相比,TGase适度预交联能够显著提升SPI的凝胶品质。经3~5 U/g TGase预交联20 min或3 U/g TGase预交联20~30 min后,SPI凝胶性得到了不同程度的提升,其中弹性模量、屈服应力、屈服应变、持水率最大分别提高了124.5%、269.0%、135.0%及53.0%。然而,过度预交联产生过大的蛋白聚集体,导致最终形成的凝胶结构粗糙、多孔,凝胶强度、持水力等均显著下降(P<0.05)。由此可见,合理利用TGase对蛋白进行预交联处理能够改善SPI凝胶制品品质,对于TGase在食品工业中的应用及传统豆制品质构改良具有重要的指导意义。  相似文献   

16.
大豆分离蛋白(soybean protein isolate,SPI)具有高营养性和良好的功能特性,但是,采用“碱溶酸沉”的传统方法所获得SPI往往会发生部分变性,最终常会以热力学稳定的水不溶性大聚集体和/或沉淀形式出现,对其凝胶性能产生不利影响。在实际生产中为改善SPI的凝胶性质,可进行物理、化学改性或酶法修饰,其中物理和化学改性反应特异性低,难以控制蛋白变性程度;而酶法修饰手段因具有反应条件温和、产品得率高、生产过程安全等特点得到广泛关注。本文综述了不同酶法修饰手段对SPI凝胶形成及性能的影响,通过描述SPI热凝胶和冷凝胶的形成机制,讨论限制性酶解、酶诱导的侧链接枝反应以及酶诱导的交联反应对SPI凝胶形成的影响,并对酶法修饰SPI凝胶的开发应用进行展望。  相似文献   

17.
ABSTRACT:  Differential scanning calorimetry (DSC) and dynamic oscillatory shear testing were performed to study the influence of inulin (Raftiline® HP-gel and Raftiline® ST-gel) and oligofructose (Raftilose® P95) on the thermal stability and gelation (using glucono-δ-lactone [GDL] as a coagulant) of soy protein isolate (SPI) dispersions. Addition of 10% (w/v) inulin/oligofructose or sucrose increased ( P < 0.05) the peak denaturation temperatures ( Tm ) of 7S and 11S soy proteins in SPI dispersion (5%[w/v], pH 7.0) by an average of 1.9 and 2.3 °C, respectively. GDL induced SPI thermal gelation, and the gel rheology was affected by both the pH decline and the specific temperature of heating. Addition of inulin/oligofructose (8%, w/v) improved the gelling properties of preheated SPI dispersion (8%, w/v) coagulated with GDL, showing 14.4 to 45.6% increase ( P < 0.05) in gel rigidity ( G ' value) at the end of heating (81 °C). Microstructural examination revealed a denser protein cross-linking structure and reduced pore sizes in SPI gels containing inulin/oligofructose. In general, inulin was more capable of improving SPI gelation than oligofructose, suggesting that the degree of fructose polymerization in the fructans was of thermal and rheological importance.  相似文献   

18.
Soy protein isolate (SPI)–maltodextrin (MD) conjugates were synthesised using Maillard reaction under high‐temperature (90, 115 and 140 °C), short‐time (2 h) dry‐heating conditions. The loss of free amino groups in proteins and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS‐PAGE) profile confirmed that SPI‐MD conjugates were formed and higher dry‐heated temperatures could increase the glycosylation degree. The emulsifying properties of SPI and SPI‐MD conjugates were evaluated in oil‐in‐water emulsions. The emulsions stabilised with SPI‐MD conjugates synthesised at 140 °C exhibited higher emulsifying stability and excellent storage stability against pH, ionic strength and thermal treatment compared with those synthesised at 90 °C, 115 °C and SPI stabilised emulsions. This might be due to a greater proportion of conjugated MD in SPI‐MD conjugates synthesised at 140 °C because of the higher glycosylation degree, and more conjugated MD on the droplet surface could provide steric effect and enhance the stability of the droplets in the emulsions.  相似文献   

19.
转谷氨酰胺酶催化对不同大豆蛋白凝胶性的影响   总被引:1,自引:0,他引:1  
研究转谷氨酰胺酶对大豆分离蛋白和7S、11S球蛋白凝胶特性的影响,采用TA-XT plus物性测定仪、荧光分光光度计对各参数进行测定。结果表明:转谷氨酰胺酶能够显著提高大豆蛋白凝胶的凝胶强度,最佳工艺条件为酶添加量40U/g、温度40℃、pH7.5、作用时间2.5h,但此时凝胶表面疏水性和保水性有所下降。经转谷氨酰胺酶催化后,不同蛋白形成热处理凝胶的凝胶特性均发生显著变化,凝胶强度均显著增加,转谷氨酰胺酶催化后大豆蛋白凝胶强度的顺序为11S>7S>SPI。  相似文献   

20.
Whey protein gel formed at 10% (w/v) whey protein concentration, 0.5% E/S, pH 7.0, 55°C and 2.5 mM CaCl2 concentration had an average particle size of 23.46 μm, hardness of 0.46, cohesiveness of 0.13 and adhesiveness of 1.40, and the gel showed semisolid, smooth and creamy texture. There were no distinct changes in gel textural properties after heating at 80 and 90°C for 5 min, respectively, or being kept at 4°C for 1 month. The textural properties of the gel showed no significant difference after its pH was adjusted to 4.5, 5.5 and 7.5 compared with that of pH 6.5 (control gel). However, the average particle size significantly increased after being adjusted to pH 4.5 and pH 5.5. Transmission electron micrographs showed that protease‐induced gel possessed much looser aggregate structure compared with heat‐induced compact gel, which may give support to its potential application in low‐fat foods that no need of extensive heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号