首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. Our apertureless microscope is designed around a confocal fluorescence microscope associated with an AFM head. First, we show that the confocal microscope alone allows single molecule imaging and single molecule fluorescence analysis. When associated with the AFM head, we demonstrate, for the first time to our knowledge, that single molecule fluorescence is enhanced under the silicon tip. We tentatively attribute this effect to field enhancement under the tip.  相似文献   

2.
We report a novel method for the fabrication of probes with localized sub-wavelength fluorescing media at their extremities. We present our first results and discuss future plans to extend this technique to the systematic fabrication of fluorescent probes for apertureless scanning near-field optical microscopy.  相似文献   

3.
We report on the fabrication, characterization and application of a probe consisting of a single gold nanoparticle for apertureless scanning near-field optical microscopy. Particles with diameters of 100 nm have been successfully and reproducibly mounted at the end of sharp glass fibre tips. We present the first optical images taken with such a probe. We have also recorded plasmon resonances of gold particles and discuss schemes for exploiting the wavelength dependence of their scattering cross-section for a novel form of apertureless scanning near-field optical microscopy.  相似文献   

4.
5.
We describe an apertureless scanning near-field optical microscope (SNOM) based on the local second-harmonic generation enhancement resulting from an electromagnetic interaction between a probe tip and a surface. The imaging mechanisms of such apertureless second-harmonic SNOM are numerically studied. The technique allows one to achieve strongly confined sources of second-harmonic light at the probe tip apex and/or surface area under the tip. First experimental realization of this technique has been carried out using a silver-coated fibre tip as a probe. The experiments reveal a strong influence of the tip–surface interaction as well as polarization of the excitation light on images obtained with apertureless second-harmonic SNOM. The technique can be useful for studying the localized electromagnetic excitations on surfaces as well as for visualization of lateral variations of linear and nonlinear optical properties of surfaces.  相似文献   

6.
We show experimentally that local optical field enhancement can occur at the end of an apertureless SNOM tip illuminated by an external light source. Our approach consists in the use of a photosensitive polymer, placed in the tip near‐field, to record intensity distribution in the vicinity of the tip end. The excited nanometre‐size light source permits us to produce nano‐patterns on the polymer surface which are then characterized by atomic force microscopy. Experimental images show the influence, on the field enhancement, of three important experimental parameters: the polarization state of the incident light, the geometry of the external illumination and the radius of curvature of the tip apex. These results are shown to be in good agreement with two‐dimensional numerical calculations based on the finite‐difference time‐domain method. We show preliminary nanometre‐size patterns created by this nano‐source excited at a metallic tip extremity and discuss the potential of this approach for near‐field optical lithography.  相似文献   

7.
We explore the performance of a scanning near-field infrared microscope, which works by scattering tightly focused CO2 laser radiation (λ = 10  μ m) from the apex of a metallized atomic force microscope tip. The infrared images of test samples prove a spatial resolution of 30 nm and are free of topographical and inertial artefacts, thus they should be of great interest for practical applications. We also observe that the infrared contrast vanishes when the input beam polarization is orthogonal to the tip axis, in accordance with theoretical expectations for a mechanism of longitudinal field interaction.  相似文献   

8.
We report the characterization of an integrated Ag+/Na+ ion exchange waveguide realized in a silicate glass substrate using apertureless scanning near‐field optical microscopy. Our experimental set‐up is based on the combination of a commercial atomic force microscope with an optical confocal detection system. Thanks to this system, the topography and evanescent optical field at the waveguide top surface are mapped simultaneously. Also, the process of apertureless scanning near‐field optical microscopy image formation is analysed. In particular, fringe patterns appearing in the image reveal the intrinsic interferometric nature of the collected signal, due to interference between the field scattered by the tip end and background fields related to guide losses. We give a quantitative interpretation of these fringes. Evanescent intensity mapping on the sample surface allowed us to extract physical waveguide parameters. In particular, it shows an unambiguous multimode beat along the waveguide propagation axis. Furthermore, we show that analysis of this intensity profile reveals back‐reflection effects from the waveguide exit facet. The resulting standing waves pattern allows us to evaluate the eigenmode propagation constants.  相似文献   

9.
10.
The fluorescence lifetime and the fluorescence rate of single molecules are recorded as a function of the position of a Si3N4 atomic force microscopy tip with respect to the molecule. We observe a decrease of the excited state lifetime and the fluorescence rate when the tip apex is in close proximity to the molecule. These effects are attributed to the fact that the dielectric tip converts non‐propagating near‐fields to propagating fields within the dielectric tip effectively quenching the fluorescence. The spatial extension of the quenching area is of subwavelength dimensions. The results are discussed in terms of molecular fluorescence in a system of stratified media. The experiment provides surprising new insights into the interactions between a fluorescent molecule and a dielectric tip. The methodology holds promise for applications in ultra high‐resolution near‐field optical imaging at the level of single fluorophores.  相似文献   

11.
We have imaged fluorescent erbium‐doped fluoride glass particles by apertureless scanning near‐field optical microscopy. The optical excitation has been performed at λ = 780 nm whereas fluorescence emission has been collected around λ = 550 nm. This process, called upconversion by energy transfer, involves two erbium ions and is not linear. Besides an improvement of the lateral resolution, we have observed on some particles that the fluorescence is not homogeneously distributed, but is rather localized in some zones brighter than others. By making tip approach curves, we have also observed that the amount of fluorescence intensity scattered by the tip is increasing when the tip is approaching the sample surface.  相似文献   

12.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

13.
14.
15.
The enhancement in electric field strength in the vicinity of a metal tip, through the excitation of plasma modes in the tip, is investigated using the finite difference time domain method; such tip enhancement has significant potential for application in scanning near-field Raman microscopy. To represent an experimentally realistic geometry the near-field probe is described by a conical metal tip with a spherical apex, with radii 20 nm and 200 nm considered, in close proximity to a glass substrate. Illumination through the substrate is considered, both at normal incidence and close to the critical angle, with the polarization in the plane of incidence. By modelling the frequency dependent dielectric response of the metal tip we are able to highlight the dependence on the scattering geometry of the nature of the electromagnetic excitations in the tip. In particular, the strongest electric field enhancement with the greatest confinement occurs for the excitation of modes localized at the tip apex, excited only for off-normal incidence. Bulk modes excited in the tip also produce enhancement, although over a larger area and with significantly less enhancement than that of the localized modes; however, the excitation of bulk modes is independent of the angle of incidence.  相似文献   

16.
A phase-change optical disc was observed using a reflection-mode scattering-type scanning near-field optical microscope (RS-SNOM). In an a.c.-mode SNOM image, the 1.2 μm × 0.6 μm recording marks were successfully observed although the data were recorded on the groove. In contrast, no recording marks could be resolved in a d.c.-mode SNOM image. These results are in good agreement with those from a numerical simulation using the finite difference time domain method. The resolution was better than 100 nm with a.c.-mode SNOM operation and the results indicate that recording marks in phase-change optical media can be directly observed with the RS-SNOM.  相似文献   

17.
The cells and tissues of many marine invertebrates and their associated flora contain fluorescent pigments and proteins, many of which have been utilized commercially and provide marker molecules in other systems for fluorescence imaging technology. However, in the study of marine invertebrates and their symbioses these naturally occurring molecules have been seen to limit or confound fluorescence microscopy analyses. Here we demonstrate the endogenous fluorescence associated with two marine invertebrates (coral and foraminifera) and describe how these qualities can be utilized in fluorescence microanalyses. Understanding and imaging the diversity of fluorescent molecules provide insight into how fluorescence microscopy techniques can now be applied to these complex systems.  相似文献   

18.
We present the first studies of dyed human hair fibres performed with an apertureless scanning near‐field optical microscope. Samples consisted of 5‐µm‐thick cross‐sections, the hair fibres being bleached and then dyed before being cut. Hair dyed with two molecular probes diffusing deep inside the fibre or mainly spreading at its periphery were investigated at a wavelength of 655 nm. An optical resolution of about 50 nm was achieved, well below the diffraction limit; the images exhibited different optical contrasts in the cuticle region, depending on the nature of the dye. Our results suggest that the dye that remains confined at the hair periphery is mainly located at its surface and in the endocuticle.  相似文献   

19.
Fluorescence scanning near-field optical microscopy (SNOM) is used to investigate binary polyfluorene-based composites of varying composition. The samples investigated contain blends of the polymer poly(9,9'-dioctylfluorene-cobenzothiadiazole), F8BT, with similar polyfluorenes of wider band gap. Images acquired from a film containing 50% by weight F8BT exhibit a high degree of correlation between the topography and fluorescence, with an F8BT-rich phase which protrudes from the surface of the film forming isolated regions with sizes from hundreds of nanometres to several micrometres. A film containing 10% by weight F8BT also has micrometre-size F8BT-rich regions, but also present are small and locally varying proportions of F8BT in the other polyfluorene component phase, indicating a hierarchy of phases within this sample. The fluorescence and topographic images of a third sample studied, containing 90% by weight F8BT, display no correlation, demonstrating that it is not always appropriate to use topographic information to determine the phase structure within polymer blends. The fluorescence SNOM images acquired from these samples are able to assist our understanding of the photovoltaic efficiency of devices fabricated from these films, which are governed by the extent of the interfacial area between these two constituent polymers.  相似文献   

20.
In this study, neurodegeneration phenomena were investigated, by performing third harmonic generation imaging measurements on the nematode Caenorhabditis elegans, in vivo. The in vivo, precise identification of the contour of the degenerating neurons in the posterior part of the nematode and the monitoring, in real time, of the progression of degeneration in the worm, through third harmonic generation imaging measurements, were achieved. Femtosecond laser pulses (1028 nm) were utilized for excitation. Thus, the THG image contrast modality comprises a powerful diagnostic tool, providing valuable information and offering new insights into morphological changes and complex developmental processes in live biological specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号