首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neodymium and praseodymium ions, singly and in combination, have been doped into a poly(vinyl alcohol)–borax matrix. X-ray diffraction shows structural correlations from 2 to 6 Å and 15 Å, while small angle neutron scattering indicates that the rare-earth ions do not affect the nanoscale structures of the gels. Differential scanning calorimetry shows the glass transition temperature to increase with concentration of Pr in the gel. Excitation in the ultraviolet region leads to luminescent emission in the visible region. Simultaneous absorption in the visible region then leads to luminescent emission in the near infra-red region. The spectral qualities of the emission bands can be varied by choosing appropriate relative ratios of rare-earth species.  相似文献   

2.
α–Cyclodextrin (α-CD) was found to form inclusion complexes with poly(ethylene glycol) (PEG) having a crystalline state in high yields, which have been investigated extensively in the past. Formation of an inclusion complex depends strongly on structure, molecular weight and geometry of the polymer. Development of a dicomponent inclusion complex (DIC) of PEG and α-CD in the presence of poly(vinyl alcohol) (PVA) and initiation of hexagonal crystals upon sonication have exhibited various microstructures. Formation of the new inclusion complex in PVA heavily depends on the concentration of PVA, temperature and sonication time. The complexes produced are characterized by FTIR, HNMR spectra and powder X-ray. 1HNMR of the complexes demonstrate that their stoichiometric ratio is 2:1 (two ethylene glycol units and one α-CD). X-ray patterns of PEG–α-CD complex indicate that the α-CD forms channels whereas PEG/α-CD/PVA creates cage-type structures.  相似文献   

3.
Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO4)-nanosized titania (TiO2) doped polymer electrolyte have been fabricated. Incorporation of TiO2 into PVA–LiClO4 system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10−4 S cm−1 is achieved at ambient temperature upon inclusion of 8 wt.% of TiO2. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO2 into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g−1 compared to non-composite polymer electrolyte with capacitance value of 3.0 F g−1 in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC.  相似文献   

4.
The aim of the present work is to study the mechanical properties of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends based polymer electrolytes for lithium ion batteries. The introduction of PVC into PMMA is found to increase the Young’s modulus value from 5.19 MPa (in pure PMMA) to 6.05 MPa (in PVC:PMMA = 70:30). The different Young’s modulus values in PVC blends is due to the difference in the cross-linking density provided by PVC with different weight fraction values. The stress–strain analysis reveals that the mechanical strength of the polymer electrolyte system deteriorated with the incorporation of LiCF3SO3. The results show that the introduction of salt decreases the Young’s modulus and stress at peak values along with higher elongation at peak value. The addition of low molecular weight plasticizers to PVC–PMMA–LiCF3SO3 decreases the modulus and stress at peak of the complexes. To be applicable in practical applications, the mechanical strength of the plasticized films is found to improve with the addition of silica as nanocomposite filler.  相似文献   

5.
An in silico protocol jointly with experimental approach is here used to design and investigate poly(vinyl alcohol) (PVA)–Chitosan polymer membranes. Atomistic computational investigations were performed to assess mechanical behaviour and urea molecules diffusion of PVA–Chitosan blend bulk models with different compositions. Blend membranes of PVA–Chitosan were prepared with different compositions by solvent-casting technique and their swelling behaviour, morphological, mechanical and transport properties were investigated. Cytotoxicity assessments by means of in vitro, indirect contact assay were carried using L929 fibroblast-like cells. The values of the Young modulus along the three perpendicular directions of computational systems were very similar and ranged from 3.64 to 4.39 GPa. Urea diffusivity was related to the blends composition and the values ranged from 1.62 × 10?7 to 9.56 × 10?8 cm2/s. Overall, a good agreement was found between experimental and simulation data.  相似文献   

6.
7.
Polymer blend electrolytes composed of poly(vinylidene fluoride-co-hexafluoro-propylene), poly(methyl methacrylate) and 1·0 M NaI as salt have been synthesized using solution caste technique by varying the PVdF(HFP)–PMMA blend concentration ratio systematically. A.c. impedance studies were performed to evaluate the ionic conductivity of the polymer electrolyte films. The highest ionic conductivity at room temperature for [PVdF(HFP)–PMMA(4:1)](20 wt%) – [NaI(1·0 M)](80 wt%) system is found to be 1·67 × 10???2 S cm???1. XRD studies reveal complete complexation of the salt in the polymeric blend systems. The temperature dependence conductivity has been performed in the range of 303–373 K and it is observed that it obeys the Arrhenius behaviour. It has been observed that the dielectric constant, ε r and dielectric loss, ε i, increases with temperature in the lower frequency region and is almost negligible in the higher frequency region. This behaviour can be explained on the basis of electrode polarization effects. Plot of real part, M r and imaginary part, M i vs frequency indicates that the systems are predominantly ionic conductors. The phenomenon suggests a plurality of relaxation mechanism.  相似文献   

8.
Novel gel polymer electrolytes (GPEs) based on poly(acrylonitrile–glycidyl methacrylate) (P(AN–GMA)) crosslinked with α,ω-diamino poly(propylene oxide) (Jeffamine) of various weight ratios and molecular weights have been prepared, and the crosslinked polymers were characterized by FT-IR and thermal analysis. It is revealed that the crosslinked polymers were amorphous in pristine state and became crystallized when doped with lithium electrolyte. Their swelling properties and mechanical behaviors were investigated and found to be heavily affected by the weight ratio and molecular weight of Jeffamine. The effect of weight ratios and molecular weights of Jeffamine on the ionic conductivity of the GPEs based on the crosslinked polymers were determined by AC impedance spectroscopy. GPEs consisting of Jeffamine of higher molecular weights and increased weight ratios showed higher ionic conductivity. The GPE based on P(AN–GMA) crosslinked with Jeffamine D2000 at a weight ratio of 1.5 exhibited the highest ionic conductivity of 8.23 × 10?4 S cm?1 at 25 °C, and preserved a moderate mechanical strength. The crosslinked polymers can be potential candidates for the construction of rechargeable lithium batteries.  相似文献   

9.
This work aimed to produce poly(acrylonitrile-co-itaconic acid) (P(AN-co-IA)) nanocomposites with poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methoxythiophene) (PMOT). An anionic surfactant sodium dodecyl benzene sulphonate was used in emulsion polymerization for nanocomposite production. Incorporations of PEDOT and PMOT on the nanoparticles were characterized by scanning electron microscopy (SEM), atomic force microscopy, Fourier transform infrared-attenuated total reflectance spectroscopy and ultra-violet spectroscopy. These nanoparticles were blended with PAN and the blends were electrospun to produce P(AN-co-IA)–polythiophene-derivative-based nanofibres, and the obtained nanofibres were characterized by SEM and energy dispersive spectroscopy. In addition, electrochemical impedance studies conducted on nanofibres showed that PEDOT and PMOT in matrix polymer P(AN-co-IA) exhibited capacitive behaviour comparable to that of ITO–PET. Their capacitive behaviour changed with the amount of electroactive polymer.  相似文献   

10.
11.
12.
The cost-effective and high-performance ionic polymer–metal composites (IPMC) were designed and prepared from ion-exchange membranes based on sulfonated poly(ether ether sulfone) (SPEES) with different degrees of sulfonation (DS). The precursor of SPEES, namely PEES, is commercially available and industrial grade. Moreover, the PEES can be transformed easily into ion-conductive SPEES through a simple sulfonation reaction. The ion exchange capacity (IEC) and water uptake (WU) of SPEES membranes increase with increasing their DS, and the proton conductivities of these hydrated SPEES membranes are subsequently enhanced. Compared with the commercial Nafion ion-exchange membrane, the SPEES membranes have higher IEC and WU. The IPMC actuators made of the SPEES membranes show the large bending strain and fast response under electric stimulation. The SPEES membrane with the highest DS (SPEES4) shows the best performance of IPMC actuators. The electromechanical behaviors of these IPMC actuators indicate that the SPEES is a candidate to substitute Nafion.  相似文献   

13.
Structure Investigation of Poly(vinyl alcohol)-Collagen Composite   总被引:2,自引:0,他引:2  
Naturally derived collagen protein was mixed thoroughly with medical grade poly (vinyl alcohol)(PVA) at the ratio of 90:10 (w/w) and was crosslinked by formaldehyde to form a homogeneous composite membrane. The buIk structure of the membrane was characterized ly means of Xray diffraction (XRD) and transmission electron microscoor (TEM). The membrane surface Structure was investigated using Fourier transform-infrared spectroscopy (attenuated totalrefraction) (FTIR-ATR), electron spectroscopy for chemical analysis (ESCA) and contact angle measurement. lt was found that collagen and PVA can remain Stable. This was supported by the fact that no sign of phase separation had been observed. The use of crosslinking agent can Substantially influence the Structure of the composite. It is suggested that this new compositedeserves further investigation and is potentially usable as a biomedical material.  相似文献   

14.
Polypyrrole–poly(?-caprolactone) (PPy–PCL) blends were prepared through an in situ deposition technique wherein different amounts of poly(?-caprolactone) were added during the polymerization of pyrrole. Ammonium persulfate was used as an oxidant in the polymerization of polypyrrole (PPy). Compared with pure PPy, the blends showed higher solubility in many organic solvents. The composition and structural characteristics of PPy–PCL were determined by Fourier transform infrared, ultraviolet–visible, and X-ray photoelectron spectroscopic methods. Scanning electron and transmission electron microscopic methods were performed to observe the morphology of the PPy–PCL blends. The temperature-dependent conductivity of the PPy–PCL blends was measured at 300–500 K. The conductivity increased with increasing PCL concentration in the blends, which can be explained by the increased mobility of charge carriers at high PCL concentrations. Based on the temperature dependence of the electrical conductivity, hopping may be the conduction mechanism involved in the PPy–PCL blending process.  相似文献   

15.
The d.c. electrical property of the dithiolene complex, or bis(4-diethyannodithiobenzil)nickel (BDN) and stearyl alcohol (SA) mixed Langmuir–Blodgett films was investigated. The conductivity of the LB films as a function of the thickness of the films and the ratio of BDN:SA as well as the current versus voltage (I–V) characteristics have been measured. The conductivity of the LB films is about 3.5 x 10-10 S cm-1 which is less than the bulk conductivity of BDN, and the conductivity of the LB films is strongly influenced by BDN concentration. The I–V property of Al-LB films is governed by the thickness of oxide layers at the LB films with Al electrodes after Auger depth profiling analysis.  相似文献   

16.
A mixed micromechanics model was developed to predict the overall electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Two electrical conductivity mechanisms, electron hopping and conductive networks, were incorporated into the model by introducing an interphase layer and considering the effective aspect ratio of CNTs. It was found that the modeling results agree well with the experimental data for both single-wall carbon nanotube and multi-wall carbon nanotube based nanocomposites. Simulation results suggest that both electron hopping and conductive networks contribute to the electrical conductivity of the nanocomposites, while conductive networks become dominant as CNT volume fraction increases. It was also indicated that the sizes of CNTs have significant effects on the percolation threshold and the overall electrical conductivity of the nanocomposites. This developed model is expected to provide a more accurate prediction on the electrical conductivity of CNT–polymer nanocomposites and useful guidelines for the design and optimization of conductive polymer nanocomposites.  相似文献   

17.
In the present study, we have aimed to produce nanoparticles (NPs) possessing the capability of carrying both of the hydrophobic and hydrophilic drugs and reveal significant release for both drug types. Poly(ε-caprolactone) (PCL) grafted poly(vinyl alcohol) (PVA) copolymer (PCL-g-PVA) has been prepared and shaped in nano-particulate form to be adequate for carrying the drugs. Stannous octoate (Sn(II)Oct2) was used to catalyze PVA and ε-caprolactone monomer to chemically bond. Moreover, this catalyst enhanced side chain polymerization reaction for the utilized ε-caprolactone monomer to form poly(ε-caprolactone) (PCL). The formed PCL was attached as branches with PVA backbone. 1H NMR has confirmed formation of PCL and grafting of PVA by this new polymer. Moreover, the vibration modes in the functional groups of PCL-g-PVA have been detected by FT-IR. The thermal alteration in the grafted polymer was checked by TGA analysis. The successfully synthesized grafted copolymer was able to self-aggregate into NPs by direct dialysis method. The size, morphology and charges associated with the obtained NPs were analyzed by DLS, TEM and ELS, respectively. PCL-g-PVA NPs were investigated as drug carrier models for hydrophobic and hydrophilic anti cancer drugs; paclitaxel and doxorubicin. In vitro drug release experiments were conducted; the loaded NPs reveal continuous and sustained release form for both drugs, up to 20 and 15 days for paclitaxel and doxorubicin, respectively. However, in a case of using pure drugs only, both drugs completely released within 1–2 h. The overall obtained results strongly recommend the use these novel NPs in future drug delivery systems.  相似文献   

18.
Preparation of shape memory polymers (SMPs) with broad transition temperature was an effective method to realize multishape memory effect. In this study, a novel SMP with a broad glass transition temperature (T g) based on microcrystalline cellulose was prepared. The structure of the SMP was analyzed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance, which can prove the successful synthesis of the material. The thermal properties were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). The dual- and multishape memory effects were also quantificationally analyzed by DMA. Further, the influence of programming temperature within T g on dual-shape memory effect was investigated, and a 1D model was built to explain their relationship.  相似文献   

19.
Porous biodegradable polymeric scaffolds are developed by physically blending two different kinds of biodegradable polymers, PCL, and PLLA, for application in tissue engineering. The main objective of the development of this material is to control the mechanical properties, such as, elastic modulus and strength. The results from mechanical testing showed that the compressive mechanical properties of PCL/PLLA scaffold can be varied by changing the blend ratio. It also showed that these properties can be well predicted by the rule of mixture. The primary deformation mechanism of the scaffolds was found to be localized buckling of struts surrounding the pores. Localized ductile failure caused by PCL phase tends to be suppressed with increasing PLLA content. The immiscibility of PCL and PLLA caused the phase-separation morphology that strongly affected the macroscopic mechanical properties and the microscopic deformation behavior.  相似文献   

20.
Blends of poly p-phenylene sulphide (PPS) and a liquid crystalline polymer (LCP) were made by two methods: (i) mixing and capillary extrusion (samples A), and (ii) injection moulding (samples B). To study miscibility in the melt and solid states and the resulting morphology, techniques like polarized light optical microscopy, capillary rheometry, dynamic mechanical thermal analysis and scanning electron microscopy with X-ray microanalysis were used. It was observed that the miscibility of the amorphous fractions of both polymers increased with increasing intensity (rates and stresses) of deformational flow (shear and elongational). Samples A had a morphology composed of fibrils of both polymers, but a matrix made of only one polymer i.e. PPS. Samples B had a mainly fibrillar morphology, with no observable matrix, made of both polymers. Formation of pure LCP fibrils was not observed neither in the extruded blends nor in the injection moulded samples. The addition of LCP to PPS improved its mechanical properties. At a molecular level, these blends can be considered to be molecular composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号