首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermal and electrical conductivity of a single-crystal \(\hbox {Cd}_{0.22}\hbox {Hg}_{0.78}\hbox {Te}\) was studied in the temperature range of practical applications (77–300 K). The sample has impurity conductivity, which is limited by the scattering of charge carriers by phonons. Heat in the sample is transferred by phonons and thermal conductivity is limited by phonon–phonon scattering. The electron contribution to the thermal conductivity can be neglected.  相似文献   

2.
3.
We report the results of the full-potential linearized augmented plane wave (FP-LAPW) calculations on the structural, elastic, optoelectronic and magnetic properties of \(\hbox {CdHo}_{2}\hbox {S}_{4}\) spinel. Both the generalized gradient approximation (GGA) and Trans-Blaha modified Becke-Johnson potential (TB-mBJ) are used to model the exchange-correlation effects. The computed lattice parameter, internal coordinate and bulk modulus are in good agreement with the existing experimental data. According to the calculated elastic moduli, \(\hbox {CdHo}_{2}\hbox {S}_{4}\) is mechanically stable with a ductile nature and a noticeable elastic anisotropy. The ferromagnetic phase of \(\hbox {CdHo}_{2}\hbox {S}_{4}\) is energetically favourable compared to non-magnetic one, with a high magnetic moment of about 8.15 \(\upmu _{\mathrm{B}}\). The calculated band structure demonstrates that the title compound is a direct band gap semiconductor. The TB-mBJ yields a band gap of \(\sim \)1.86 and \(\sim \)2.17 eV for the minority and majority spins, respectively. The calculated optical spectra reveal a strong response in the energy range between the visible light and the extreme UV regions.  相似文献   

4.
5.
6.
In this study, we present the results of the manufacturing of \(\hbox {BaTiO}_{3}\) powder, which is meant for use in stacked-disk multilayer actuator production. The solid-state technique was used for powder preparation. The properties of barium titanate material, at each stage of its fabrication (powder, granulate, sintered material), influencing on its application for the stacked-disk multilayer actuator were determined. Particularly, the four parameters of \(\hbox {BaTiO}_{3}\) sinter affecting on the usability properties of actuators, not found before in the literature, were estimated. Parameters characterizing the extent of material sintering, SEM microstructures and electric properties of the fabricated pellets are presented and discussed. The dilatometric curve was executed using the high temperature dilatometer to determine at which temperature barium titanate pellets and beams should be sintered to receive full dense sinters. Parameters characterizing the extent of material sintering: the apparent density, the apparent porosity and the water absorbability were estimated. Finally, the problem of metal layer deposition on barium titanate ceramics during actuator fabrication is considered.  相似文献   

7.
Structural and optical properties of \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) nano-multilayer composites were investigated for heat mirror applications. \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) thin films were fabricated through a physical vapour deposition method by using electron-beam evaporation at the vacuum chamber at 10\(^{-5}\) Torr. \(\text {WO}_{3}\) nano-layer was fabricated at 40 nm. Annealing treatment was carried out at 100, 200, 300 and 400\(^{\circ }\)C for 1 h after the deposition of first layer of \(\text {WO}_{3}\) on the glass. On \(\text {WO}_{3}\) film, Ag nano-layers with 10, 12 or 14 nm thickness were deposited. Individual layers morphology was investigated using atomic force microscopy (AFM) and deduced that a smoother layer can be achieved after the annealing at 300\(^{\circ }\)C. Ellipsometry analysis was executed to determine both layers, Ag film thickness and inter-diffusion between the \(\text {WO}_{3}\)–Ag–\(\text {WO}_{3}\) layers. It was inferred that there was almost no interfering among the \(\text {WO}_{3}\)\(\text {WO}_{3 }\) layers in the samples with 12 and 14 nm Ag thickness; while silver was deposited on the annealed \(\text {WO}_{3}\) layer at 300\(^{\circ }\)C. UV–visible spectrophotometer showed that the annealing treatment of the first \(\text {WO}_{3}\) layer enhanced the transparency of films in the visible region. The innovations of the present study have been based on the annealing of the films and finding an optimum thickness for the Ag film at 12–14 nm. Heat mirrors efficiency was assessed according to the principle of their optical behaviour and optimum performance obtained for 14 nm of Ag film, deposited on annealed tungsten oxide at 300\(^{\circ }\)C.  相似文献   

8.
\(\hbox {CuBO}_{2}\) is a novel material in the research field of transparent conducting oxide. In this study, \(\hbox {CuBO}_{2}\) nanostructures have been synthesized via sol–gel method. The phase formation is confirmed using an X-ray diffractometer. Detailed morphological analysis is performed by field emission scanning electron microscopy and transmission electron microscopy. A novel uniform nanonetwork-like structure is obtained and its band gap is found to be 4.24 eV. In ultraviolet light irradiation, this as-synthesized sample shows efficient photocatalytic activity for degradation of organic dye Rhodamine B. The degradation efficiency and the rate constant were calculated as \(\sim \)70% and \(1.32\times 10^{-3}\,\hbox {min}^{-1}\), respectively. This nanonetwork-like structure can be a potential candidate as the base material to attach various metals and metal oxide nanostructures to get highly efficient future photocatalysts. As a result, this study opens up a new gateway to fabricate novel environment-friendly nanocatalysts with high performance.  相似文献   

9.
Thin films of optimally doped(001)-oriented \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) are epitaxially integrated on silicon(001) through growth on a single crystalline \(\hbox {SrTiO}_{3}\) buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the \(\hbox {SrTiO}_{3}\) buffer enables high quality \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films exhibiting high transition temperatures to be integrated on Si. For a 30-nm thick \(\hbox {SrTiO}_{3}\) buffer, 50-nm thick \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films that exhibit a transition temperature of \(\sim \)93 K, and a narrow transition width (<5 K) are achieved. The integration of single crystalline \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) on Si(001) paves the way for the potential exploration of cuprate materials in a variety of applications.  相似文献   

10.
We report on the thermoluminescence (TL) properties of \(\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}\) phosphor powder and thin films. For the phosphor powder, the TL intensity increases with an increase in UV dose for up to 20 min and then decreases. The TL intensity peak shifts slightly to higher-temperature region at relatively high heating rates, but with reduced peak intensity. Important TL kinetic parameters, such as the activation energy (E) and the frequency factor (s), were calculated from the glow curves using a variable heating rate method, and it was found that the glow peaks obey first-order kinetics. For the films, broad TL emissions over a wide temperature range with reduced intensity relative to that of the powder were observed. The maxima of the TL glow peaks of the films deposited in oxygen ambient and vacuum shift toward higher temperature relative to the TL peak position of the film deposited in an argon environment. Vacuum environment resulted in the formation of a deep trap relative to oxygen and argon environments. Furthermore, the structure of \(\hbox {Y}_{2}{\mathrm {Si}}{\mathrm {O}}_{5}{:}\,{\mathrm {Ce}}^{3+}\) phosphor powder transformed from \({x}_{2}\)-monoclinic polycrystalline phase to \({x}_{1}\)-monoclinic polycrystalline phase, for deposition at low substrate temperature.  相似文献   

11.
The superconducting phase transition at \(T_\mathrm{c} = 2.3\) K was observed for the electrical resistivity \(\rho ({T})\) and magnetic susceptibility \(\chi (T)\) measurements in the ternary compound La\(_{5}\hbox {Ni}_{2}\hbox {Si}_{3}\) that crystallizes in the hexagonal-type structure. Although a single-phase character with the nominal stoichiometry of the synthesized sample was confirmed, a small trace of the La–Ni phase was found, being probably responsible for the superconducting behaviour in the investigated compound. The magnetization loop recorded at \({T} = 0.5\) K resembles a star-like shape which indicates that the density of the critical current can be strongly suppressed by a magnetic field. The low-\(T _{\rho }(T)\) and specific heat \({C}_\mathrm{p}({T})\) data in the normal state reveal simple metallic behaviour. No clear evidence of a phase transition to any long- or short-range order was found for \(C_\mathrm{p}(T)\) measurements in the T-range of 0.4–300 K.  相似文献   

12.
Investigated are the changes in the basal-plane electrical resistivity of an optimally doped \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) single crystal in the course of long-term aging (17 years) at room temperature in air. In consequence of aging the sample has decomposed into three phases with different temperatures of the superconducting transition, while the transition widths of these phases have increased significantly. The temperature dependence of the electrical resistivity has retained a metallic character. The fluctuation conductivity near the critical temperature is described well by the 3D Aslamazov–Larkin model. In the course of aging significant changes in the scattering characteristics have been observed, whereas the Debye temperature has changed slightly and the transverse coherence length has remained constant.  相似文献   

13.
A new method is developed for correlating the static dielectric constant of polar fluids over wide ranges of conditions where few experimental data exist. Molecular dynamics simulations are used to establish the temperature and density dependence of the Kirkwood g-factor, and also the functional form for the increase of the effective dipole moment with density. Most parameters in the model are obtained entirely from simulation; a single proportionality constant is adjusted to obtain agreement with the limited experimental data. The method is applied to hydrogen sulfide (\(\hbox {H}_{2}\hbox {S}\)) and sulfur dioxide \((\hbox {SO}_{2})\), both of which are important in geochemistry but have only a few dielectric data available. The resulting correlations agree well with the available liquid data, obey physical boundary conditions at low density and at high temperature, and interpolate in density and temperature in a physically reasonable manner. In addition, we present a more conventional correlation for the dielectric constant of sulfur hexafluoride, \(\hbox {SF}_{6}\), where more data are available.  相似文献   

14.
The radiative properties of dense ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates are investigated from the visible to the mid-infrared region at room temperature. Each specimen has different surface finishings on different sides of the laminate. A monochromator was used with an integrating sphere to measure the directional-hemispherical reflectance and transmittance of these samples at wavelengths from 0.4 \(\upmu \hbox {m}\) to 1.8 \(\upmu \hbox {m}\). The specular reflectance was obtained by a subtraction technique. A Fourier-transform infrared spectrometer was used to measure the directional-hemispherical or specular reflectance and transmittance with appropriate accessories from about 1.6 \(\upmu \hbox {m}\) to 19 \(\upmu \hbox {m}\). All measurements were performed at near-normal incidence on either the smooth side or the rough side of the sample. The experimental observations are qualitatively interpreted considering the optical constants, surface roughness, and volume scattering and absorption.  相似文献   

15.
In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\delta }\) ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature “tails” (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature (T > \(T_\mathrm{c})\), the temperature dependence of the excess paraconductivity can be described within the Aslamazov–Larkin theoretical model of the fluctuation conductivity for layered superconductors.  相似文献   

16.
The highly effective g-\(\hbox {C}_{3}\hbox {N}_{4}\) hybridized CdS photocatalysts were synthesized via a successive calcination and hydrothermal process. The as-prepared photocatalysts were characterized by X-ray powder diffraction, transmission electron microscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic performance of the \(\hbox {C}_{3}\hbox {N}_{4}\)/CdS nanocomposites was evaluated by the photodegradation of RhB under visible light irradiation. The results showed that photocatalytic ability of the \(\hbox {C}_{3}\hbox {N}_{4}\)/CdS nanocomposites was higher than that of pure \(\hbox {C}_{3}\hbox {N}_{4}\) and CdS. The enhanced photocatalytic activity could be attributed to the high separation efficiency of the photo-excited electron-hole pairs. A possible mechanism of the photocatalytic degradation of RhB on \(\hbox {C}_{3}\hbox {N}_{4}/\)CdS nanocomposites was also proposed.  相似文献   

17.
18.
Journal of Low Temperature Physics - $${text{La}}_{0.7} {text{Ca}}_{0.18} {text{Ba}}_{0.12} {text{Mn}}_{0.95} {text{Sn}}_{0.05} {text{O}}_{{3{ }}}$$ compound has been successfully prepared by...  相似文献   

19.
The magnetocaloric effect is investigated for \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 (0.25 ≤ x ≤ 2) system near a phase transition from a ferromagnetic to a paramagnetic state as a function of temperature with low external magnetic field change of 100 Oe. The sample with x = 1 has the smallest value of maximum magnetic entropy change and the specific heat change, and highest values of full-width at half-maximum and relative cooling power. The results indicate that the \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 system has a prospective application for magnetic refrigerant in an extended high temperature range. Consequently, \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 compounds are very attractive candidates for magnetic refrigeration applications, especially nitrogen liquefier.  相似文献   

20.
A novel thermal control coating was presented based on the thermochromism of manganite. The pigment of K-doped manganite nanoparticles was dispersed into polymer matrix to prepare the coating with curing below 200 \(^{\circ }\)C. The nanoparticles size mainly distributes around 100–200 nm, and it shows a comparable stoichiometric ratio. The phase transition of the nanoparticles was observed from ferromagnetic metallic to paramagnetic insulator state. With increasing K doping level, the phase transition temperature increases, achieving controllable adjustment. Coating surface with and without pore defect was obtained by different polymer matrix. A sharp emittance variation was observed with increasing temperature in K-doped coating. The variation magnitude of emittance is up to 0.46, which is attractive to space thermal control. It is suggested that the pigment content of 50 wt% is sufficient to realize a large emittance variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号