首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究脂肪氧合酶(lipoxygenase,LOX)在猪肉贮藏、加工过程中对脂肪氧化及风味形成的作用机制。通过序列分析和聚合酶链式反应扩增获得了猪肉12-脂肪氧合酶催化结构域(12-lipoxygenase catalytic domain,12-LOXcd)的编码基因,采用大肠杆菌表达系统,经镍柱亲和层析和Superdex G200凝胶过滤层析纯化得到12-LOXcd蛋白,并研究其酶学性质。结果表明,构建的原核表达载体pMBP-12-LOXcd在大肠杆菌中成功可溶性表达了猪肉12-LOXcd,该重组蛋白经纯化可达电泳纯。12-LOXcd以亚油酸为底物的比活力为2 826.7 U/mg,最适pH值为6.0,最适作用温度为30 ℃。亚油酸Km为0.40 mmol/L,亚麻酸Km为0.55 mmol/L,花生四烯酸Km为4.15 mmol/L,表明最适底物为亚油酸。与大豆LOX相比,该酶在较高NaCl质量分数(9%)时仍保持活性稳定;对热较不稳定,在60 ℃条件下失活,但优于大豆LOX的热稳定性;此外,12-LOXcd的pH值稳定性也优于大豆LOX,在碱性条件下仍能保留部分活力。  相似文献   

2.
以大肠杆菌基因组DNA为模板,扩增得到苹果酸脱氢酶(mdh)编码基因mdh,构建了重组菌pET-28a-mdh/BL21并成功表达了mdh,大小约36 000。选用Ni柱亲和层析法纯化具有活性的苹果酸脱氢酶(mdh),纯化后比酶活达到112.5 U/mg,纯化倍数达2.62倍,回收率为59%。并对该酶的酶学性质进行了初步研究,其中反应最适pH值为6.0,在pH值2.0~6.0范围内稳定;反应最适温度为37℃,在42℃以下酶的稳定性较好。K+对酶有明显的激活作用,Cu2+对酶有抑制作用,Hg2+和Zn2+对酶有很强的抑制作用。醇类对酶的活力影响不大,丙三醇可显著提高酶的热稳定性。酶动力学参数以草酰乙酸为底物的Km为0.235 mmol/L,Vmax为0.47μmol/(L.min)。  相似文献   

3.
4.
2-Hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl-HODA) hydrolase (CumD), an enzyme of the cumene biodegradation pathway encoded by the cumD gene of Pseudomonas fluorescens IP01, was purified to homogeneity from an overexpressing Escherichia coli strain. SDS-polyacrylamide gel electrophoresis and gel filtration demonstrated that it is a dimeric enzyme with a subunit molecular mass of 32 kDa. The pH optima for activity and stability were 8.0 and 7.0-9.0, respectively. The enzyme exhibited a biphasic Arrhenius plot of catalysis with two characteristic energies of activation with a break point at 20 degrees C. The enzyme has a K(m) of 7.3 microM and a k(cat) of 21 s(-1) for 6-isopropyl-HODA (150 mM phosphate, pH 7.5, 25 degrees C), and its substrate specificity covers larger C6 substituents compared with another monoalkylbenzene hydrolase, TodR Unlike TodF, CumD could slightly hydrolyze 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (6-phenyl-HODA). A mutant enzyme as to a putative active site residue, S103A, had 10(5)-fold lower activity than that of the wild-type enzyme.  相似文献   

5.
为实现从L-谷氨酸到α-酮戊二酸(α-ketoglutaric acid,α-KG)的高效生物转化,将来源于白丝北里孢菌(Kitasatospora setae KM-6054)的L-谷氨酸氧化酶(L-glutamate oxidase,LGOX)在大肠杆菌(Escherichia coli)中实现异源表达,并研究其酶学特性。根据LGOX的氨基酸序列和大肠杆菌系统偏好性合成LGOX全基因序列,并通过pET28a(+)/DE3系统在大肠杆菌中实现了功能表达。诱导剂异丙基硫代半乳糖苷(isopropyl-β-D-thiogalactoside,IPTG)终浓度为0.1?mmol/L,20?℃诱导18?h,重组大肠杆菌粗酶液酶活力可达49.10?U/mL。亲和层析获得酶比活力为45.98?U/mg纯酶,十二烷基硫酸钠-聚丙烯酰氨凝胶电泳条带显示蛋白分子质量大小约为70?kDa。酶学性质研究表明:其最适反应温度和pH值分别为40?℃和6.0;Km值为1.23?mmol/L,Vmax值为76.24?μmol/(min·mg),L-谷氨酸为该酶的最适底物。本研究确定了LGOX在E.?coli?BL21中的异源表达及酶学特性,为生物转化合成α-KG提供了新的参考途径。  相似文献   

6.
利用酸性蛋白酶酶解花椒籽蛋白制备抗菌肽,以底物质量浓度、酶与底物比、pH值、酶解温度、酶解时间为影响因子,在单因素试验结果的基础上,应用Box-Behnken方法进行三因素三水平的试验设计,以对大肠杆菌的抑菌率为响应值,应用响应面法对花椒籽蛋白制备抗菌肽工艺进行优化。其最佳工艺条件为:底物质量浓度30 mg/mL、酶与底物比3.0%、酶解pH 4.0、酶解温度51.2 ℃、酶解时间4.7 h,此条件下酶解产生的抗菌肽复合物的水解度为9.05%,对大肠杆菌的抑菌率为56.98%。  相似文献   

7.
Thermotoga maritima普鲁兰酶的基因克隆与酶学性质研究   总被引:3,自引:0,他引:3  
以海栖热袍菌(Thermotoga mariti ma)MSB8基因组DNA为模板,PCR扩增出普鲁兰酶基因pulA,克隆入表达载体pET28a,转化EscherichiacoliBL21-CodonPlus(DE3)-RIL,经IPTG诱导,测定普鲁兰酶酶活性。结果表明,重组转化子的细胞破碎液有普鲁兰酶活性,SDS-PAGE电泳结果显示出分子量约为96ku特异性蛋白质条带。酶学性质分析表明,其最适反应温度达到95℃,在30~80℃均保持最大酶活力的80%以上,最适反应pH值为6.0,且在碱性条件下稳定。  相似文献   

8.
Thermostable β‐galactosidase from an E. coli transformant containing the enzyme gene from P. woesei was immobilized at pH 4.0 and a glutaraldehyde concentration of 10 mM on chitin isolated from shrimp Crangon crangon shells. These preparations had a specific activity of 43,000 U/g of chitin at 85C using ONPG as substrate. The optimum pH and temperature for immobilized β‐galactosidase activity were 5.2 and 93C. Immobilization shifts the optimum pH for the activity of the enzyme by 0.2 units towards the acid side. The immobilized enzyme is stable at temperatures close to the optimal value, and the residual activity for ONPG hydrolysis of the preparations incubated 5 h in 0.1 M phosphate citrate buffer (pH 5.4) at 90C and 100C was 70% and 40% of the initial value, respectively.  相似文献   

9.
A thermophilic xylan-degrading Actinomadura sp. S14 was isolated from compost in Thailand. Hemicellulase activities such as endo-1,4-β-xylanase, β-xylosidase and α-arabinofuranosidase were induced with xylan-containing agriculture wastes and oat spelt xylan. The gene encoding xylanase consisting of 687bp was cloned from Actinomadura sp. S14. The deduced amino acid sequence contained a signal peptide of 41 amino acids and a probable mature xylanase of 188 amino acids. An open reading frame (xynS14) corresponding to a mature xylanase was expressed in Escherichia coli and Pichia pastoris. The specific activity of purified XynS14 (P. pastoris) was 2.4-fold higher than XynS14 (E. coli). Both XynS14s showed the same basic properties such as optimal pH and temperature (pH 6.0 and 80°C) and stability in a broad pH range (pH 5.0-11.0) and at high temperatures up to 80°C. Both XynS14s showed approximately the same substrate specificity and K(m) values toward various xylans, but XynS14 (P. pastoris) showed higher V(max) and K(cat) than XynS14 (E. coli). Higher specific activities of XynS14 (P. pastoris) may be due to protein-folding in the host. Purified XynS14 showed more endo-1,4-β-xylanase activity on xylan and xylooligosaccharides than on xylotriose.  相似文献   

10.
The enzyme with β-galactosidase activity from E. coli BL21(DE3) transformant containing the gene encoding enzyme from Pyrococcus woesei (DSM 3773) was isolated using cell extraction in 0.01 M phosphate buffer (pH 7.2), protein thermopredpitation at 85C, precipitation at acetone/extract ratio of 1:1 (v/v) and gel filtration on Sephadex G-200. The increase in the enzyme specific activity was determined using ONPG as substrate. The activity increased from 2.9 × 103 U/mg protein to 37 × 103 U/mg. Thermoprecipitation removed 78% of E. coli protein and retained 92% of the cell extract activity. The acetone precipitation and gel filtration applied in the next purification steps led to homogeneous enzyme with specific activity of 37,700 U/mg protein. The isolated enzyme had a half-life of 23 h and 9 h during incubation at 85C and 100C, respectively, in 0.1 M citrate-phosphate buffer (pH 5.4).  相似文献   

11.
A beta-N-acetylglucosaminidase gene (nag84A) was cloned from Clostridium paraputrificum M-21 in Escherichia coli. The nag84A gene consists of an open reading frame of 4647 by encoding 1549 amino acids, with a deduced molecular weight of 174,311, which have a catalytic domain belonging to family 84 of the glycoside hydrolases. Nag84A was purified from a recombinant E. coli and characterized. Although Nag84A exhibited high homology to the hyaluronidase from Clostridium perfringens, it did not degrade hyluronic acid. The enzyme hydrolyzed chitooligomers such as di-, tri-, tetra-, penta- and hexa-N-acetylchitohexaose, and synthetic substrates such as 4-methylumbelliferyl N-acetyl beta-D-glucosaminide [4-MU-(G1cNAc)], but did not hydrolyze 4-MU-beta-D-glucoside, 4-MU-alpha-D-glycoside, 4-MU-alpha-D-GlcNAc, 4-MU-alpha-D-galactoside, 4-MU-beta-D-xyloside, PNP-beta-D-galactoside, and PNP-alpha-D-xyloside. The enzyme was optimally active at 50 degrees C and pH 6.5, and the apparent K(m) and V(max) values for 4-MU-(GlcNAc) were 8.5 microM and 1.39 micromol/min/mg of protein, respectively. SDS-PAGE, zymogram, and immunological analyses suggested that Nag84A was inducible by ball-milled chitin. Since Nag84A has a high molecular weight with a family 84 catalytic domain with high homology to hyaluronidases but no hyaluronidase activity, the enzyme is a novel beta-N-acetylglucosaminidase different from others reported having low molecular weights and belonging to family 3 and family 18.  相似文献   

12.
Rhizopus oligosporus strain CT11K2, commonly used in tempeh (fermented soybean) production produced both extra- and intracellular phytases. The enzymes were isolated from growth media and the cultured mould and partially purified by acetone fractionation, gel filtration on Sephadex G-100 and DEAE-cellulose chromatography. Intracellular phytase activity was higher than that of the extracellular enzyme. Both enzymes showed maximum activity at pH 4.5 and 55 degrees C, suggesting relatively high thermostability. The enzymes were partially inhibited by high concentrations of substrate. The Km and Vmax values of the extracellular phytase were 0.15 mM and 0.076 mumol Pi per min per ml DEAE-cellulose purified enzyme, respectively, and for the intracellular phytase were 0.17 mM and 0.34 mumol Pi per min per ml enzyme, respectively. Extracellular phytases showed inactivation and activation energies for the hydrolysis of phytic acid of approximately 28,300 cal per mol and 6100 cal per mol, respectively, while inactivation and activation energies for the intracellular phytase were approximately 33,200 per mol and 9500 cal per mol, respectively.  相似文献   

13.
A plasmid, pNT4553, was constructed for high level production of N-carbamyl-d-amino acid amidohydrolase (DCase), the thermostability of which has been improved by amino acid substitution. The DCase activity and the stability of the plasmid in the host cells were dependent on the Escherichia coli strains used. E. coli HB101 was the most suitable host strain among the 13 types of E. coli tested. E. coli HB101 exhibited the highest activity, i.e. 6.36 units/ml of culture broth in 2YT medium (1.6% tryptone, 1.0% yeast extract, and 0.5% NaCl, pH 7.0), and the plasmid was stably maintained by cultivation in 5 types of E. coli including HB101. Casamino acids, NZ-amine, peptone, and protein extract (a mixture of hydrolyzates of corn gluten, wheat gluten and soybean), were found to be suitable as natural nitrogen sources for both enzyme activity and growth. When cultivation was carried out in the presence of high concentrations of glycerol (6.5%) as the carbon source, and protein extract (3.0%) as the nitrogen source, in a small volume of the medium (20 ml of medium in a 500-ml shaking flask), in which the aeration level was estimated to be high, growth and activity reached OD550=63.8 (17.1 mg of dry cell weight/ml of culture broth) and 22.9 units/ml of culture broth, respectively. The economical hyperproduction of DCase using only inexpensive constituents for the medium was achieved.  相似文献   

14.
缪士涛  胡敏  宫兴文 《食品科学》2022,43(12):187-188
通过将乙醛脱氢酶2(acetaldehyde dehydrogenase 2,ALDH2)与NusA-tag融合表达,以获得能够在大肠杆菌中可溶性表达并且具有较好活性的重组蛋白。首先,根据Aldh2的基因序列设计引物,引入EcoRI和XhoI的酶切位点,聚合酶链式反应扩增出Aldh2基因片段,连接到pMD19-T-simple载体,并转化到大肠杆菌DH5α菌株。测序正确后,双酶切处理,将Aldh2基因片段克隆到表达载体pET44b(+)上NusA-tag下游的EcoRI和XhoI酶切位点之间,得到pET44b(+)-NusA-Aldh2重组载体,转化入大肠杆菌BL21(DE3)菌株。经异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactopyranoside,IPTG)诱导,表达的融合蛋白具有良好的溶解性,主要存在于上清液中。融合蛋白的最优表达条件为IPTG浓度0.25 mmol/L、诱导温度37 ℃、诱导时间3 h。重组蛋白的最适反应温度为37 ℃,在pH 7.0时达到最好的催化效果。不同金属离子如Ca2+、K+、Na+、Mg2+、Mn2+都对酶有激活作用,且Mg2+效果最好,最佳的酶活性为1.64 U/mL。而野生型ALDH2在大肠杆菌中表达时完全以无活性的包涵体形式存在,复性后得到的酶活性为1.43 U/mL。本研究通过引入NusA进行融合表达,实现了ALDH2在大肠杆菌中的可溶性表达,且重组蛋白的活性优于包涵体复性蛋白。这些结果表明利用NusA进行融合表达是制备重组ALDH2的一个良好方法。  相似文献   

15.
Bacteriophage 63D, previously isolated from sewage, is associated with alpha-2,8-linked polysialic acid degrading activity. We cloned a DNA fragment containing the sialidase gene from a 63D phage genomic library and the enzyme was functionally expressed in Escherichia coli. Determination of the nucleotide sequence of the fragment revealed that it contained one open reading frame (ORF) coding for a 108-kDa polypeptide consisting of 984 amino acid residues. The fragment had promoter sequences similar to the E. coli consensus promoters for sigma70. The deduced amino acid sequence of the central region of the ORF showed homology to those of phages K1F (51.6% identity) and PK1E (51.7% identity) endosialidases. Two Asp-box motifs that are widely found in sialidases were conserved. Purification of the soluble enzyme from lysed culture broth of infected E. coli yielded a 90-kDa protein upon SDS polyacrylamide gel electrophoresis, suggesting that the primary translational product is processed to the mature 90-kDa protein. The molecular mass of the enzyme was determined as 360 kDa by gel filtration, indicating that the native enzyme was probably a tetramer of identical 90-kDa subunits.  相似文献   

16.
The carboxypeptidase gene from Geobacillus SBS-4S was cloned and sequenced. The sequence analysis displayed the gene consists of an open reading frame of 1503 nucleotides encoding a protein of 500 amino acids (CBP(SBS)). The amino acid sequence comparison revealed that CBP(SBS) exhibited a highest homology of 41.6% (identity) with carboxypeptidase Taq from Thermus aquaticus among the characterized proteases. CBP(SBS) contained an active site motif (265)HEXXH(269) which is conserved in family-M32 of carboxypeptidases. The gene was expressed with His-Tag utilizing Escherichia coli expression system and purified to apparent homogeneity. The purified CBP(SBS) showed highest activity at pH 7.5 and 70°C. The enzyme activity was metal ion dependent. Among metal ions highest activity was found in the presence of Co(2+). Thermostability studies of CBP(SBS) by circular dichroism spectroscopy demonstrated the melting temperature of the protein around 77°C. The enzyme exhibited K(m) and V(max) values of 14 mM and 10526 μmol min(-1) mg(-1) when carbobenzoxy-alanine-arginine was used as substrate. k(cat) and k(cat)/K(m) valves were 10175 s(-1) and 726 mM(-1) s(-1). To our knowledge this is the highest ever reported enzyme activity of a metallocarboxypeptidase and the first characterization of a metallocarboxypeptidase from genus Geobacillus.  相似文献   

17.
The N-acetylmuramidase SR1 gene from Streptomyces rutgersensis H-46 was cloned in Escherichia coli JM109 and expressed in E. coli BL21(DE3)pLysS. An open reading frame included the leader peptide region encoding a polypeptide of 65 amino acid residues and the mature SR1 enzyme region encoding a polypeptide of 209 amino acid residues. The overall G + C content of the mature enzyme gene was 67.6%, with 98.1% of G or C in the third position of the codons. The calculated molecular weight of the mature enzyme was 23,057 Da. The amino acid sequence of the mature enzyme showed a significant level of identity with bacteriolytic enzymes from Streptomyces globisporus (50.9% identity), Chalaropsis species (40.2% identity) and Saccharopolyspora erythraea (31.0% identity). The mature enzyme gene cloned into plasmid pET26b carrying a signal peptide, peIB, was expressed in E. coli BL21(DE3)pLysS. The signal peptide region was cleaved during the production of the enzyme. Specific activity of the enzyme purified from the transformant was almost identical to that of the native enzyme. Furthermore, the SR1 enzyme gene cloned with the leader peptide gene into plasmid pET28a was also expressed in E. coli. In this case, a proform-like protein was partially processed; 35 amino acid residues were cleaved but 30 amino acid residues remained. This proform like protein has approximately one-nineteenth the activity of the native enzyme. These results indicated that the native SR1 enzyme was produced in the following manner in the cells of S. rutgersensis H-46. The SR1 enzyme gene was translated to a pre-proform protein followed by the deletion of a signal peptide. Finally, the proform-like protein was processed by deletion of the remaining leader peptide.  相似文献   

18.
对恶臭假单胞杆菌(Pseudomonas putida ATCC12633)中的苯乙酮酸脱羧酶基因mdlC进行克隆,导入质粒载体pET28a中,将构建得到的重组质粒pET28a-mdlC转化于宿主细胞E.coliBL21(DE3),重组大肠杆菌E.coli BL21(DE3)(pET28a-mdlC)经IPTG诱导,SDS-PAGE分析得到相对分子质量约为57 000的蛋白质条带。将E.coli BL21(DE3)(pET28a-mdlC)和E.coli BL21(DE3)(pET30a-mdlB)两株重组菌以混合静息细胞的形式作为生物催化剂,利用各自胞内的重组酶对3-乙氧基-4-羟基苯乙醇酸(乙基扁桃酸)脱氢氧化、脱羧合成乙基香兰素。未经优化,催化24 h后反应液中乙基香兰素的质量浓度可达1.94 g/L,且没有副产物产生。同时研究表明,该混合静息细胞重复使用3次能保持90%以上的催化活力,还有效缩短了反应时间。  相似文献   

19.
木聚糖酶融合基因的构建及其在大肠杆菌中的表达   总被引:1,自引:0,他引:1  
以来源于Aspergillus usamii E001的高比活木聚糖酶XynⅡ为亲本,采用"中心模板法"将耐高温木聚糖酶TfxA的前31个氨基酸连接在XynⅡ的N端,构建出融合木聚糖酶TPL。将TPL在大肠杆菌BL21 (DE3)中进行表达,并对表达条件进行了优化,对表达产物的酶学性质进行了分析。结果表明,融合酶TPL最适pH为4.6,最适温度为45℃,和XynⅡ保持一致,但热稳定性有一定提高,在50℃处理10min,TPL和XynⅡ的残余酶活分别为15.72%和6.92%。  相似文献   

20.
山药中多酚氧化酶的特性及防止褐变的研究   总被引:14,自引:0,他引:14  
山药中PPO的最适温度,最适pH值,热稳定性及PPO与时间,底物浓度,酶浓度的关系等多方面的特性,通过L9(3^4)正交试验,筛选出以抗坏血酸,柠檬酸,氯化钙,氯化钠为主剂的复合护色剂最佳配比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号