首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过实验研究了深冷处理过程中的最低处理温度对9%Ni钢力学性能和逆转奥氏体含量的影响。采用了不同的深冷处理温度和保温时间,并与9%Ni钢新发展起来的热处理工艺淬火、亚稳淬火、回火(QLT)相结合。结果表明,-80℃和-110℃的冷处理对9%Ni钢的力学性能和逆转奥氏体含量没有明显影响。然而,-140℃保温24小时的深冷处理能够提高9%Ni钢的冲击韧性,其机理主要在于深冷处理使得块状的逆转奥氏体转变为条状。此外,-140℃深冷处理通过等温马氏体转变值得逆转奥氏体的含量减少。-196℃保温24小时深冷处理增加了逆转奥氏体的含量,同时细化了二次马氏体板条组织, 从而使得9%Ni钢的室温和低温冲击韧性均得到提高。其机理主要是由于深冷-196℃深冷处理促使了超细碳化物的析出,同时增加了组织内应力,从而为逆转奥氏体在回火过程中的形核提供了更多了形核位置。  相似文献   

2.
A novel process comprised of ultra-fast cooling after control rolling, intercritical quenching and tempering (UFC-LT) was applied to 3.5%Ni steel. In addition, quenching and tempering (QT) treatment was conducted in comparison. The present study focuses on the relationship between the microstructure and cryogenic toughness of 3.5%Ni steel. Results show that the microstructure of steel treated by UFC-LT consisted of tempered martensite, intercritical ferrite and two types of reversed austenite (RA) (needle shape and blocky). Compared to the QT sample, the UFC-LT sample’s ultimate tensile strength decreased slightly, while its elongation increased from 32.3 to 35.7%, and its Charpy absorption energy at ?135 °C increased from 112 to 237 J. The ductile-brittle transition temperature of UFC-LT sample was lower than that of the QT sample by 18 °C. The superior cryogenic toughness after UFC-LT compared to QT treatment can be attributed to the dissolution of cementite, approximately 3.0% increase in RA and the decrease in effective grain size.  相似文献   

3.
In this study, the effects of deep cryogenic treatment (sub-zero treatments at -196 °C) on the microstructural, mechanical, and tribological behaviours of commercial Vanadium-Titanium micro-alloyed 38MnVS6+Ti steel was investigated. The samples were quenched (conventionally heat treated), deep cryogenically treated and then tempered at 250 °C for 1 h. Deep cryogenic treatments were applied for three different soaking times (namely 8 h, 12 h, and 24 h). The effects of deep cryogenic treatment on the specimens were evaluated in terms of impact toughness, hardness, wear resistance, and microstructure. The results indicated that the application of longer deep cryogenic treatment times significantly improved wear resistance, and improved the hardness slightly (1 to 3 HRC). However, deep cryogenic treatment also reduced the impact toughness compared to that of the conventionally heat treated sample, due to the precipitation of carbides and increasing hardness.  相似文献   

4.
Creep-resistant 9Cr steels are extremely important in thermal power generation industry due to their marked resistance to creep and corrosion. The weldability of these alloys is critical since they are used in welded construction equipment. The required mechanical properties are achieved after post-weld heat treatment. This study examined the effect of different post-weld heat treatments on microstructure and mechanical properties of creep strength-enhanced 9Cr steel welding deposits. It was obtained with an experimental flux-cored arc welding wire used under protective gas (Ar-20% CO2). The heat treatments used were: (1) tempering (760 °C?×?2 h), (2) solubilizing (1050 °C?×?1 h)?+?tempering (760 °C?×?2 h) and (3) solubilizing (1150 °C?×?1 h)?+?first tempering (660 °C?×?3 h)?+?second tempering (660 °C?×?3 h). All-weld metal chemical composition was analyzed, and hot tensile tests were carried out at different temperatures. Charpy-V impact tests and Vickers microhardness measurements were also performed. Microstructures were studied using x-ray diffraction and optical and scanning electron microscopy. In all cases, a martensitic matrix with intergranular and intra-granular precipitates was detected. In the as-welded condition, δ-ferrite was also found. Microhardness dropped, and the impact energy increased with post-weld heat treatments. The highest hot tensile strength result was achieved with samples submitted to austenization at 1150 °C and double tempering at 660 °C.  相似文献   

5.
In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.  相似文献   

6.
In this study, a tempered martensitic matrix was obtained in a low carbon steel, by applying austenization, quenching and tempering heat treatments. After austenization at 1000°C for 30 minutes, steel samples were quenched in water and then tempered at 200, 540 and 600°C for 30 minutes. Hardness measurements were done and then immersion tests were carried out in a 3.5 wt % NaCl solution for periods ranging between 1–7 days. Weight losses of the samples were determined after each immersion period and microstructural studies were performed on the corroded surfaces. Corrosion rates were calculated using weight loss data and verified by potentiodynamic tests. Results revealed that corrosion behavior of the experimental steels was directly affected by tempering temperature, hardness and microstructure.  相似文献   

7.
In the present study, A-TIG welding was carried out on grade 91 steel plates of size 220 × 110 × 10 mm using the in-house developed activated flux to produce butt-joints. The room-temperature impact toughness of the A-TIG as-welded joint was low due to the presence of untempered martensite matrix despite the low microinclusion density caused by activated flux and also low δ-ferrite (<0.5 %) content. Toughness after postweld heat treatment (PWHT) at 760 °C-2 h was 20 J as against the required value of 47 J as per the specification EN: 1557:1997. However, there was a significant improvement in impact toughness after PWHT at 760 °C for 3 h. The improvement in toughness was attributed to softening of martensite matrix caused by precipitation of carbides due to tempering reactions. The precipitates are of type M23C6, and they are observed at grain boundary as well as within the grains. The A-TIG-processed grade 91 steel weld joint was found to meet the toughness requirements after PWHT at 760 °C-3 h. Observations of fracture surfaces using SEM revealed that the as-welded joint failed by brittle fracture, whereas post-weld heat-treated weld joints failed by decohesive rupture mode.  相似文献   

8.
The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.  相似文献   

9.
To obtain the high-temperature strength and toughness of the medium–high-temperature–pressure steel, the microstructure evolution and mechanical properties of Fe-2Cr-Mo-0.12C steel subjected to three different tempering temperatures after being normalized were investigated. The results show that the microstructure of the sample, tempered in the range 675-725 °C for 50 min, did not change dramatically, yet the martensite/austenite constituents decomposed, and the bainite lath merged together and transformed into polygonal ferrite. At the same time, the precipitate size increased with an increase in tempering temperature. With the increase in the tempering temperature from 675 to 725 °C, the impact absorbed energy of the Fe-2Cr-Mo-0.12C steel at ?40 °C increased from 257 to 325 J, and the high-temperature yield strength decreased; however, the high-temperature ultimate tensile strength tempered at 700 °C was outstanding (422-571 MPa) at different tested temperatures. The variations of the properties were attributed to the decomposition of M/A constituents and the coarsening of the precipitates. Fe-2Cr-Mo-0.12C steel normalized at 930 °C and tempered at 700 °C was found to have the best combination of ductility and strength.  相似文献   

10.
We describe here the microstructural evolution during simulation of welding thermal cycles in novel Fe–Mn–Ni cryogenic steel and elucidate the mechanism of cryogenic toughness. The original microstructure was tempered martensite and ~10% retained austenite. Electron backscattered diffraction indicated that the frequency of large-angle boundaries with misorientation >15° was similar at peak temperatures of 1320, 870 and 760°C. The volume fraction of retained austenite determined by X-ray diffraction was ~11% at 760°C, 9% at 870°C and 1% at 1320°C. Retained austenite was film-like near the bainite lath, and it was enriched with Mn and Ni at peak temperatures of 760 and 870°C. The enrichment with Mn and Ni stabilised the austenite and softened the bainitic matrix. The higher volume fraction of stable retained austenite was the dominant factor responsible for superior cryogenic toughness at the peak temperature of 760°C.  相似文献   

11.
The phase segregation of semisolid processed products resulted in an inhomogeneous microstructure and poor mechanical properties of such products. Optimal subsequent heat treatments including quenching and tempering with various processing parameters were conducted to improve the quality of RAP (recrystallization and partial melting) processed Cr–V–Mo steel. The microstructure characteristics and mechanical properties, such as hardness, tensile strength, elongation, impact toughness, and resistance to high-temperature wear, of specimens subjected to various heat treatments were investigated. When the RAP-processed specimen was quenched from 1050 °C after isothermal holding for 480 s and then tempered twice at 560 °C for 2 h, microstructural evolution took placed in both former solid-phase and liquid-phase regions. The weakening of phase segregation, the redistribution of carbides, and the release of residual stress occurred during this heat treatment strategy caused a good combination of mechanical properties.  相似文献   

12.
The purpose of this work is to present a study of the mechanical and microstructural properties of welded joints in carbon steel obtained by the automated submerged arc process with high heat input, with the aim of increasing productivity in the fabrication of pipes for mooring equipment. Joints were welded in ASTM A-572 Gr.50 steel with thickness of 25 mm by the single-pass submerged arc process, with heat input varying from 7.8 to 14.0 kJ/mm. The joints were assessed by Charpy-V impact testing at a temperature of 0 °C, Vickers microhardness with 1-kgf load, and metallography of test specimens taken from the weld metal and the heat-affected zone. The results showed that the welded joints had impact toughness above the minima required for use in the welding of C-Mn and low-alloy steels with impact requirements of 34 J at 0 °C. A significant increase in productivity was observed, without impairing the mechanical properties, allowing fabrication of pipes for oil equipment with a significant reduction in fabrication time.  相似文献   

13.
Double austenitization (DA) treatment is found to yield the best combination of strength and toughness in both low-temperature as well as high-temperature tempered conditions as compared to single austenitization (SA) treatments. Obtaining the advantages of double austenitization (DA) to permit dissolution of alloy carbides without significant grain coarsening was attempted in AISI 431 type martensitic stainless steel. Structure-property correlation after low-temperature tempering (200 °C) as well as high-temperature double tempering (650+600 °C) was carried out for three austenitization treatments through SA at 1000 °C, SA at 1070 °C, and DA at 1070+1000 °C. While the increase in strength after DA treatment and low-temperature tempering at 200 °C is due to the increased amount of carbon in solution as a result of dissolution of alloy carbides during first austenitization, the increased toughness is attributable to the increased quantity of retained austenite. After double tempering (650+600 °C), strength and toughness are mainly found to depend on the precipitation and distribution of carbides in the microstructure and the grain size effect.  相似文献   

14.
The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at ??196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.  相似文献   

15.
Abstract

The durability of the springs is limited by plastic deformation, fatigue and fracturing. From this point of view, the use of spring steel with following properties is recommended: high ductility and toughness at operation temperatures from ?40°C to +50°C, good hardenability that provides required mechanical properties even at maximum dimensions. For the manufacturers of springs, the information relating to the heat treatment of specific spring steel is important. This paper describes the influence of heat treatment parameters on tensile strength Rm, yield strength Rp0·2, fracture toughness KIc, impact toughness, Charpy-V as a function of tempering temperature in the range from 350 to 700°C for a specific austenitising temperature. Also the difference between the properties given by the mathematical modelling of heat treatment using the computer software Hardenability and the properties obtained by testing the heat treated samples are presented.  相似文献   

16.
Abstract

Hardness and toughness are the main properties determining wear resistance and performance of high speed steel tools. The objective of the present paper was to study the effect of hardening conditions on the toughness of high speed steels, mainly concerning the hardening temperature and cooling rate during quenching. Several conditions were simulated in laboratory and industrial heat treatment furnaces and toughness was evaluated through the static bend test. Under the same tempering condition, the higher the hardening temperature, the higher the attained hardness. The results also point out a compromise situation between hardness and toughness, until 1200°C hardening temperature is reached; for temperatures over this value, the loss in toughness become more accentuated, without a considerable increase in hardness. The present paper also describes the mechanical properties of M2 high speed steel heat treated to lower hardness, necessary in some cold work tooling applications. In this case, hardening at lower temperatures and tempering close to the peak hardness has shown the best results. And lastly, regarding cooling conditions during nitrogen hardening in a vacuum furnace, the results point out that low quenching pressures might reduce the cooling rate and decreases material toughness, but the differences are very small for pressures between 6 and 9 bar.  相似文献   

17.
The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.  相似文献   

18.
Abstract

Billets of 42CrMoS4 steel were subjected to a programme including forging and rolling to different reduction ratios, followed by quenching and tempering to simulate online thermomechanical treatment (TMT) during rolling. The mechanical properties obtained were compared with those obtained by conventional heat treatment (CHT) (quenching from 860°C and tempering). It was found that increasing the hot reduction ratio from 18 to 60%, accompanied by a decrease in the finish rolling temperature from 900 to 750°C, enhances strength only at the expense of elongation, while rapid quenching instead of air cooling from the same finish rolling temperature yields improvements in both strength and ductility. It was also found that CHT provides higher hardness, whereas TMT provides higher impact toughness. TMT will confer major economic savings since the heat treatment is achieved online.  相似文献   

19.
采用光学显微镜、扫描电镜、电子万能试验机和显微硬度仪等研究了正火+回火+调质热处理工艺对ZG34Cr2Ni2Mo低合金钢显微组织及力学性能的影响.结果表明:正火(870℃×3 h)+回火(600℃×5 h)+调质(淬火860℃×3 h+回火600℃×5 h)的热处理工艺有助于提高ZG34Cr2Ni2Mo低合金钢的力学性...  相似文献   

20.
This article reports the results of an investigation on the effects of austenite on the cryogenic mechanical properties of Fe-13Mn-3Al steel. The volume fraction of austenite varied from 4% to a maximum of 70%, according to tempering temperature and time. In the study, the morphology of austenite changed from the interlath type at below 550°C to block type at above 600°C. Yield strength of the alloy decreased linearly with the austenite volume fraction from 1,157 MPa in a 500°C tempered specimen to 761 MPa in a 650°C tempered one. Tensile strength and elongation tended to increase with the austenite volume fraction. Hyung Chul Lee and Hu-Chull Lee are currently faculty members at the School of Materials Science and Engineering at Seoul National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号