首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain the high-temperature strength and toughness of the medium–high-temperature–pressure steel, the microstructure evolution and mechanical properties of Fe-2Cr-Mo-0.12C steel subjected to three different tempering temperatures after being normalized were investigated. The results show that the microstructure of the sample, tempered in the range 675-725 °C for 50 min, did not change dramatically, yet the martensite/austenite constituents decomposed, and the bainite lath merged together and transformed into polygonal ferrite. At the same time, the precipitate size increased with an increase in tempering temperature. With the increase in the tempering temperature from 675 to 725 °C, the impact absorbed energy of the Fe-2Cr-Mo-0.12C steel at ?40 °C increased from 257 to 325 J, and the high-temperature yield strength decreased; however, the high-temperature ultimate tensile strength tempered at 700 °C was outstanding (422-571 MPa) at different tested temperatures. The variations of the properties were attributed to the decomposition of M/A constituents and the coarsening of the precipitates. Fe-2Cr-Mo-0.12C steel normalized at 930 °C and tempered at 700 °C was found to have the best combination of ductility and strength.  相似文献   

2.
This study was developed to understand the influence of chemical composition and austenitic grain size on the wear resistance in stainless shape memory steel. A two-body abrasive wear device was used to understand the wear mechanism involved. They were tested pins with the following chemical composition: Fe-10.3Mn-5.3Si-9.9Cr-4.9Ni-0.006C and Fe-14.2Mn-5.3Si-8.8Cr-4.6Ni-0.008C after being austenitized at 900 and 1050 °C, followed by water quenching. The surface characterization was performed by optical microscopy and scanning electron microscopy, and the roughness profile evaluation was also conducted. The weight loss was measured after conducting the wear testing, and the wear rates were estimated. The results demonstrated that the alloy with less manganese and higher chromium content has the best wear resistance (between 17.5 and 18.9%). With an increase of the austenitic grain size there was a small reduction on the wear resistance (between 3.0 and 4.1%). The chemical composition demonstrated to have higher influence on the wear behavior than the austenitic grain size.  相似文献   

3.
The effect of the High Temperature Gas Nitriding (HTGN) and tempering treatment of 17Cr-1Ni-0.5C-0.8Mo (CNMo) steel was experimentally investigated. The HTGN was carried out at 1050 °C for 1 h in a gaseous atmosphere containing 98.07 kPa of nitrogen. Chromium nitrides in the austenite and martensite phase appeared at the nitrogen-permeated surface layer after the HTGN treatment. The hardness of the outmost surface of the HTGN treated specimen measured 708 Hv. When it was tempered at 500 °C for 1 h, the hardness of the outmost surface was 763 Hv as a result of the precipitation of mostly micro Cr2N, which was densely packed with a small amount of Cr23C6 and the secondary hardening effect. In addition, an improvement in the corrosion resistance was observed in the tempered specimen.  相似文献   

4.
研究了临界区回火温度对Fe-4Mn-1.2Cr-0.3Cu-0.6Ni中锰钢组织与力学性能的影响。通过热轧后直接淬火+临界区回火的工艺制备试验钢。采用光学显微镜(OM)、电子探针显微分析仪(EPMA)的扫描功能、透射电镜(TEM)、拉伸试验及冲击试验等对轧后淬火态和回火态试验钢的显微组织及力学性能进行了表征。结果表明,试验钢热轧后淬火可获得较高位错密度的板条马氏体,经过临界区回火后获得在回火马氏体基体上分布残留奥氏体的复合组织。随着临界区回火温度的升高,试验钢的抗拉强度呈升高趋势,而屈服强度先下降后增加,伸长率的变化趋势与试验钢中的残留奥氏体含量相关,冲击性能随临界区回火温度的升高呈先升高后降低的趋势。630 ℃回火后试验钢的拉伸性能最佳,650 ℃回火后试验钢的冲击性能最佳,确定最佳临界区回火温度区间为630~650 ℃。  相似文献   

5.
In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.  相似文献   

6.
This article reports the results of an investigation on the effects of austenite on the cryogenic mechanical properties of Fe-13Mn-3Al steel. The volume fraction of austenite varied from 4% to a maximum of 70%, according to tempering temperature and time. In the study, the morphology of austenite changed from the interlath type at below 550°C to block type at above 600°C. Yield strength of the alloy decreased linearly with the austenite volume fraction from 1,157 MPa in a 500°C tempered specimen to 761 MPa in a 650°C tempered one. Tensile strength and elongation tended to increase with the austenite volume fraction. Hyung Chul Lee and Hu-Chull Lee are currently faculty members at the School of Materials Science and Engineering at Seoul National University.  相似文献   

7.
High temperature gas nitriding (HTGN) at 1050 °C and tempering of a 17Cr-1Ni-0.5C-0.4V (CNV) steel were experimentally investigated. The phases appearing in the surface layer of the HTGN-treated steel were martensite and austenite with mostly Cr2N precipitates that were formed by permeated nitrogen, and a small amount of Cr23C6 and VN precipitates. The reverse migration of carbon hindered the diffusion of nitrogen when nitrogen permeated from the surface to the interior, which resulted in the accumulation of nitrogen on the outermost surface. The strong affinity between nitrogen and chromium atoms induced the diffusion of chromium from the interior to the surface, leading to the substitution of Cr23C6 for Cr2N. After tempering the HTGN-treated steel at 500 °C, the dense precipitates of Cr2N and the increased martensite phase in the surface layer led to secondary hardening, which increased the hardness value up to 901 Hv.  相似文献   

8.
In the present work, two Fe-18Mn-10Al-xC low-density steels with different C concentrations were investigated. It is revealed that the difference in C concentration resulted in a marked difference in the microstructures of the investigated steels. The microstructure consisted of ferrite and austenite as well as of precipitates in Fe-18Mn-10Al-0.8C (0.8C steel); while carbides distributed on the austenite matrix in Fe-18Mn-10Al-1.2C (1.2C steel) after the same heat treatment. During deformation, dislocations exhibited a typical paired superdislocation feature in ferrite in 0.8C steel, extensive planar glide occurred in austenite in both steels and Taylor lattice-like structures, and well-developed microbands appeared in 1.2C steel. Overall, 0.8C steel demonstrated a tensile strength of 973.6 MPa and elongation of 44%, and 1.2C steel received a lower tensile strength (881.3 MPa) and a much higher elongation (78%). The strain hardening behavior of the two alloys was also different. The strain hardening rate decreased with strain in a non-monotonic feature for 0.8C steel, while it exhibited a moderate inflection in 1.2C steel.  相似文献   

9.
This experiment investigated the role of chromium in the mechanical properties of Fe-5Mn-9Ni-5Mo-1.5Ti maraging steels containing up to 3% chromium. Remarkable age-hardening responses were observed in the Fe-5Mn-9Ni-5Mo-1.5Ti and Cr-bcaring alloys. A ductile-brittle-ductile transition occurred in the Cr-bearing alloys during isothermal aging below 510°C. This was due to the segregation of titanium and manganese to prior austenite grain boundaries and their subsequent desegregation into the matrix. The addition of chromium to the base alloy considerably improved its ductility after aging at 520°C. From microstructure and AES analyses, it is suggested that chromium addition augments the volume fractions of (Fe,Mn)2Mo and η-Ni3Ti precipitates in the Fe-5Mn-9Ni-5Mo-Cr alloys, which act as sinks of manganese and titanium in the matrices. This resulted in the reduction of the alloying elements concentration in the matrix, which is followed by the reduction in the segregation level of the elements at prior austenite grain boundaries, and consequently enhanced intergranular fracture strength. The optimum combination of strength and ductility was obtained in the Fe-5Mn-9Ni-5Mo-3Cr-l.5Ti alloy aged at 520°C for 2 hr. and was σ0 2=1721 MPa, σLS=1756 MPa. and ε,= 10.2%.  相似文献   

10.
王英虎 《金属热处理》2022,47(7):203-210
借助FactSage数值模拟软件对Fe-(10~20)Mn-(5~10)Al-(0~0.5)C系低密度钢的凝固及冷却路径、相变及析出相进行了研究,利用FactSage软件中的FSstel数据库对该体系的垂直截面图进行计算,分析了Mn、Al及C元素对凝固及冷却过程中相变及析出相的影响,并得到了Fe-15Mn-8Al-0.25C低密度钢的平衡凝固相变路径图。结果表明,Fe-15Mn-8Al-0.25C低密度钢中热力学计算出的平衡相有液相、铁素体、奥氏体和κ-碳化物, 由1600 ℃冷却至600 ℃完整的平衡相变路径为:液相→液相+铁素体→液相+铁素体+奥氏体→铁素体+奥氏体→铁素体+奥氏体+κ-碳化物。C和Mn含量的增加可扩大Fe-15Mn-8Al-0.25C低密度钢奥氏体相区,Al元素增加缩小奥氏体相区。κ-碳化物的析出温度随着Al与C含量的增加而升高,Al与C元素均可促进κ-碳化物析出。Fe-15Mn-8Al-0.25C低密度钢800 ℃时效3 h后的抗拉强度为602 MPa,屈服强度为520 MPa,断后伸长率为28.6%,时效5 h后的抗拉强度为729 MPa,屈服强度为685 MPa,断后伸长率为22.4%,随着时效时间增加,试验钢的强度增加,断后伸长率降低。Fe-15Mn-8Al-0.25C低密度钢的密度为6.99 g/cm3,相比普通钢材减重效果达10.4%。  相似文献   

11.
研究了一种包含有多尺度微结构的高MnN低Ni超级双相不锈钢25Cr-2Ni-3Mo-10Mn-0.5N经过冷轧和退火后,多尺度晶粒度对点腐蚀和力学性能的影响。结果表明:多尺度微结构与退火时间密切相关,在1050oC,奥氏体与铁素体平均晶粒大小随着时效时间的增加而增加,时效1min后,奥氏体和铁素体的晶粒大小分别为1.5和7.18μm。随着多尺度晶粒的长大,样品的抗拉强度,屈服强度和断面收缩率下降,而样品的耐腐蚀性能增强。多尺度微结构对该双相钢25Cr-2Ni-3Mo-10Mn-0.5N的点腐蚀性能和力学性能起着重要作用。  相似文献   

12.
通过真空电弧熔炼方法制备了Fe-13Cr-3.5Ni不锈钢,并系统研究了不同热处理工艺对其微观组织以及硬度的影响。结果表明:熔炼态Fe-13Cr-3.5Ni不锈钢为典型的板条状马氏体组织;经过不同温度固溶和回火处理(600 ℃)后,其组织结构由板条状马氏体和少量残留奥氏体组成,残留奥氏体含量随着固溶温度的升高先增加后减少,而硬度值先降低后升高,硬度最低值为101.5 HRB;在1000 ℃淬火并在不同温度回火后其组织结构由回火板条状马氏体以及残留奥氏体组成,在650 ℃以下回火时,随着回火温度的升高奥氏体含量逐渐增多,当回火温度达700 ℃时,残留奥氏体含量下降,其洛氏硬度值随着回火温度的升高先降低后升高,其硬度值在99~107 HRB范围内。  相似文献   

13.
开发制备了一种汽车用含0.5%Nb(质量分数)的Fe-28Mn-10Al-C-0.5Nb 低密度钢,旨在研究Nb 在奥氏体Fe-Mn-Al-C低密度钢中的存在形态,以及Nb 添加对Fe-Mn-Al-C 低密度钢组织与力学性能影响.结果表明,Fe-28Mn-10Al-C 低密度钢中加入Nb 后,奥氏体晶粒平均尺寸由39....  相似文献   

14.
夏源 《锻压技术》2020,(4):184-188
选择在线充氢的方法测试了Fe-24Mn-4Cr-0.5C高锰钢的力学特性,并对其处于不同变形程度下的显微组织形貌进行了观察,分析了钢材试样的力学特性及其氢脆敏感性。研究结果表明:高锰钢的退火组织由呈现等轴分布的单相奥氏体组成,退火温度上升,形成的晶粒尺寸也更小。退火态高锰钢试样发生了连续屈服并表现出强塑积特性,当退火温度上升后,试样的强度也发生了减小。相比较未充氢试样,充氢后的高锰钢的组织均匀性得到了明显提升,试样的强度与塑性显著降低。经过900℃退火后,试样的强塑积达到了最大,而在充氢状态下对试样进行低应变拉伸测试,其强塑积发生了明显减小。当退火温度上升后,高锰钢将更易受到氢脆的影响。  相似文献   

15.
The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.  相似文献   

16.
Alloying stainless steels with nitrogen has distinct advantages. Nitrogen is a strong austenite stabilizer and a potent solid-solution strengthener, and nitrogen has greater solubility than carbon in iron. This study investigates the relationship among nitrogen concentration, precipitate microstructure, and abrasive wear using two high-nitrogen stainless steel alloys: Fe-19Cr-5Mn-5Ni-3Mo (SSI) and Fe-16Cr-7Mn-5Ni (SS2). Alloy SSI contained 0.7 wt% N and was solution annealed at 1150 °C, thereby dissolving the nitrogen interstitially in the austenite. Subsequent aging, or cold work and aging, at 900 °C led to the grain-boundary, cellular, and transgranular precipitation of Cr 2 N. Alloy SS2 was remelted in a highpressure (200 MPa) N 2 atmosphere, leading to a spatial gradient of nitrogen in the alloy in the form of interstitial nitrogen and Cr 2 N and CrN precipitates. Nitrogen contents varied from a low of approximately 0.7 wt % at the bottom of the billet to a high of 3.6 wt % at the top. Nitrogen in excess of approximately 0.7 wt% formed increasingly coarser and more numerous Cr 2 N and CrN precipitates. The precipitate morphology created in alloy SSI due to aging, or cold work and aging, had little effect on the abrasive wear of the alloy. However, a decrease in the abrasive wear rate in alloy SS2 was observed to correspond to the increase in number and size of the Cr 2 N and CrN precipitates.  相似文献   

17.
利用OM、SEM、TEM以及力学性能测试等表征手段研究了添加Al、Cu的40CrNi3MoV钢在900 ℃油冷淬火及450~650 ℃回火后的显微组织和力学性能的变化规律。结果表明,试验钢经淬火+回火后的显微组织主要为回火索氏体,同时析出了纳米级NiAl-Cu析出相,最佳回火温度区间为500~550 ℃。由于基体中析出纳米尺度B2结构的NiAl析出相,对添加Al的试验钢中微裂纹的扩展有较强的阻碍作用, 500~550 ℃回火时抗拉强度最高增幅达200 MPa;进一步添加Cu后,富Cu相和位错的相互作用使得试验钢的屈服强度提高了150 MPa。500 ℃回火时抗拉强度为1706 MPa,屈服强度为1505 MPa,试验钢的拉伸和冲击断口呈现出典型的解理断裂特征,有明显的撕裂棱。  相似文献   

18.
The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the aaaaaaaaaaaaaaaa-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is s  相似文献   

19.
宁静  杨鹏  高齐  苏杰 《金属热处理》2022,47(11):95-99
采用扫描电镜、能谱分析和力学试验等研究了回火温度对30Cr3Si2NiMoWNb超高强度钢组织和性能的影响。结果表明,回火温度变化可实现对力学性能的大幅度调控。200~350 ℃回火,微观组织为回火马氏体与细小弥散的ε-碳化物,此阶段强韧性变化幅度较小,抗拉强度等级1700 MPa、屈服强度等级1300 MPa;350~500 ℃回火由于渗碳体的不均匀析出,强度和韧性同时下降,其中500 ℃左右回火脆性最为严重,冲击吸收能量下降至最低点;500~700 ℃回火生成较稳定的球状渗碳体,强度大幅下降,韧性大幅上升。回火温度对强韧性的影响机理为ε-碳化物、渗碳体等析出相演变过程的影响;一定含量的Si元素可以提高渗碳体形成温度和回火脆性温度。  相似文献   

20.
分别采用870、900、930℃淬火及620、650、680℃回火,研究不同热处理制度对510 MPa级船板用钢原始奥氏体晶粒度、显微组织、强韧性的影响.结果表明:510 MPa级船用试验钢随870、900、930℃淬火温度的升高,晶粒度变为7.5、7、6.5级,强度、平均冲击吸收能量下降;不同温度淬火试验钢随620、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号