首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱亮  魏鹏  侯国清  苏婷婷 《轧钢》2012,29(5):9-13
奥氏体不锈钢Cr15Mn9Cu2NiN在热轧过程中容易产生边裂.在热模拟试验机上开发出热轧实验装置,进行热轧实验,分析该不锈钢边部裂纹产生的原因.结果表明,压下量达到一定程度时,在所有变形温度下,试样边部均会产生裂纹,裂纹均沿奥氏体晶界扩展.在1000~1150℃变形时裂纹倾向较大,分析认为这与奥氏体不锈钢在此温度区间内的延性下降有关.在该温度区间内,轧后试样的微观组织具有晶粒租大和晶粒内部变形亚结构与孪晶共同存在的特征,而在1200℃变形时,晶粒尺寸较小,晶粒内部的变形亚结构和孪晶全部消失.  相似文献   

2.
L.W. Tsay  S.C. Yu  D.-Y. Lin 《Corrosion Science》2007,49(10):4028-4039
Slow displacement rate tensile tests were carried out to assess the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of AISI 316L and 254 SMO stainless steel (SS) plates and welds. 254 SMO generally exhibited a better resistance to hydrogen embrittlement than 316L. The strain-induced transformation of austenite to martensite in the 316L SS was responsible for the high hydrogen embrittlement susceptibility of the alloy and weld. Sensitized 254 SMO (i.e., heat-treated at 1000 °C/40 min) base plate and weld comprised of dense precipitates along grain boundaries. Interfacial separation along solidified boundaries was observed with the tensile fracture of 254 SMO weld, especially the sensitized one. Dense grain boundary precipitates not only reduced the ductility but also raised the susceptibility to sulfide stress corrosion cracking of the sensitized 254 SMO plate and weld.  相似文献   

3.
Solidification cracking susceptibilities of two types of superaustenitic stainless steel, 254SMO and SR50A, were evaluated by transverse Varestraint tests. The susceptibilities were compared with those of conventional austenitic stainless steel 316L, and factors influencing the difference of susceptibility were discussed. The comparison showed that 254SMO and SR50A are more sensitive to solidification cracking than 316L. In the transverse Varestraint tests, both total and maximum crack lengths are longer in the superaustenitic stainless steel. Because of the longer maximum crack length, the superaustenitic stainless steel also has a wider brittleness temperature range of cracking than 316L: about 178 °C for the superaustenitic stainless steel and 43 °C for 316L. It is believed that straight subgrain boundaries owing to the cellular dendritic solidification and segregations of sulfur and phosphorus in the subgrain boundaries of superaustenitic stainless steel make it more sensitive to solidification cracking. In addition to the solidification cracking, reheat cracking is also observed within the previous weld bead in the superaustenitic stainless steel because of fully austenitic solidification with significant segregations. This suggests that caution should be given to the occurrence of reheat cracking when superaustenitic stainless steel is multi pass welded.  相似文献   

4.
Abstract

The influence of sulphur on microfissuring has been studied by characterising the hot ductility and heat affected zone (HAZ) microfissuring in welded wrought Inconel 718. A series of Inconel 718 base alloys, with sulphur concentrations in the range 7–110 wt-ppm and with the lowest possible concentrations of carbon, boron, and phosphorus were used in the study. The hot ductility of the alloys was measured using a Gleeble 1500 system, and their weldability was evaluated by bead on plate electron beam welding. The effect of sulphur on microfissuring in the weld HAZ was compared with that of boron in boron containing, but sulphur free, alloys. Sulphur reduced the weldability of the material, but its influence was very moderate in comparison with that of boron. The rate of increase of the brittle temperature range hot ductility parameter with increasing sulphur concentration was significantly smaller compared with that with increasing boron concentration. This may be because sulphur and boron seem to influence grain boundary liquation in the HAZ differently during welding of these alloys. Sulphur influences the weld HAZ microfissuring mainly by reducing the solidus temperature of liquid films during the cooling part of the welding cycle. Boron, however, not only reduces the solidus temperature, but also promotes grain boundary liquation during the heating part, and is therefore more effective than sulphur in promoting HAZ microfissuring.  相似文献   

5.
Hot cracking during laser welding of advanced high-strength steels is reported to be a serious problem by automotive manufacturers. In this work, hot cracking susceptibilities of transformation-induced plasticity (TRIP) and dual-phase (DP) steels are studied based on a multi-scale modelling approach. Transient temperatures measured from welding experiments are used to validate a finite element (FE) model. The temperature, thermal gradient and cooling rate in the weld fusion zone are extracted from the FE model and pre-defined as boundary conditions to a phase field model. The welding-induced microstructural evolution is simulated considering thermodynamic and mobility data. Results show that, compared to the DP steel, the TRIP steel has a broader solidification range, a greater pressure drop at the inter-dendritic regions, and an increased phosphorus segregation at the grain boundaries; all these make this steel more susceptible for hot cracking.  相似文献   

6.
Austenitic stainless steels are usually chosen to make many components of nuclear power plants(NPPs).However,their microstructure in the heat-affected zone(HAZ)will change during the welding process.Some failures of the weld joints,mainly stress corrosion cracking(SCC),have been found to be located in the HAZ.In this research,the microstructure,micro-hardness,residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied.However,traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal,higher residual strain and micro-hardness,and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test.What’s more,the residual strain,the microhardness and the fraction of random grain boundaries decreased,while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ.Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal.It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ.  相似文献   

7.
1.~hoNi,AIalloyisanewpotentialhightemperaturestmcturalmaterialbecauseofitsexcellentstrengthandanti--corrosionpropertiesinhightemperatureservice.ButtherearebrittlephenomenainitspolygonalcrystalmaterialduringdifferenttemperaturerangebecauseofitsLI,typeintermetalliccompounds.ThusitsengineeringaPPlicationislicitted.ThisbrittlenesscanhereducedwithadditionofthialelementsB,Zr,Hf,CrandFeandsoon.AfewliteraturesareavailableaboutthefusionweldingofNi,kialloysandmat4fromOakfudgeNationalbooratory,U.S…  相似文献   

8.
316L不锈钢激光快速成形过程中熔覆层的热裂机理   总被引:12,自引:0,他引:12  
采用微观测试分析方法,针对316L不锈钢粉末,深入研究了激光快速成形过程中熔覆层的开裂行为及其形成机理,研究结果表明,316L不锈钢激光熔覆层裂纹多发生在树枝晶的晶界,呈现出典型的沿晶开裂特征,裂纹断面上有明显的氧化彩色,扫描电镜照片显示裂纹断面上树枝晶的方向与轮廓清晰可见,树枝晶晶界相当圆滑,表明裂纹是在高温下产生的,熔覆层中的裂纹是凝固裂纹,属于热裂纹范畴,裂纹产生的主要原因是熔覆层组织在凝固温度区间晶界处的残余液相受到熔覆层中的拉伸应力作用所导致的液膜分离的结果。  相似文献   

9.
Abstract

The hot ductility behaviour of the Al–Li alloy 2091–T3 was investigated using hot ductility testing of the simulated heat affected zone (HAZ) using a Gleeble 1500 machine. Alloy 2091 displayed lower ductility, greater susceptibility to HAZ cracking, and poor ductility recovery on cooling from the nil strength temperature, compared with alloy 2219. Optical metallography and electron microscopy revealed that the ductility loss was accompanied by fracture transition from ductile transgranular mode to brittle intergranular mode. It was found that the HAZ intergranular liquation cracking was caused by non-equilibrium eutectic melting of T2 phase precipitated at grain boundaries.  相似文献   

10.
Austenitic stainless steels have a wide range of applications in the energy industry, but the corrosion resistance of these stainless steels can be reduced by sensitization, particularly in the heat affected zones in welds. Sensitization is the formation of chromium carbide precipitates along the grain boundaries, causing the formation of a zone of chromium depletion around the grain boundary. Since chromium is the primary alloying element that makes stainless steel corrosion resistant, this chromium depleted zone is susceptible to intergranular stress corrosion cracking (IGSCC). Sensitization occurs when a stainless steel is exposed to a high temperature for an extended time period, such as during welding. The objective of this research is to determine the sensitivity of nonlinear ultrasound to the presence of sensitization by using nonlinear Rayleigh waves to quantitatively track the sensitization of 304 and 304L stainless steels as a function of holding time at 675 °C. The effect of the carbon content of the alloys (304 versus 304L) to the sensitization process and the measured nonlinearity parameter, β are investigated. Annealing of these specimens isolates the effect of just sensitization, removing the presence of cold work which can also affect the material nonlinearity. Complementary electrochemical potentiodynamic reactivation (EPR) measurements and microscopy are used to confirm the absence or presence of sensitization. The results show that the acoustic nonlinearity parameter is sensitive to the presence of chromium carbide precipitates in sensitized austenitic stainless steels.  相似文献   

11.
Hot deformation tests were conducted on cast and wrought Incoloy 901 produced by electro-slag remelting at temperatures of 950-1150 °C and strain rates of 0.01-1 s?1. Both materials showed acceptable hot workability in the studied range of temperature and strain rates. However, better workability of the wrought material was associated with easier dynamic recrystallization compared to in the cast material. A complete dynamic recrystallization in the wrought material was observed at temperatures above 1100 °C. On the other hand, in the cast material that was characterized by a coarse grain structure, dynamic recrystallization occurred partially and was attributed to the low density of grain boundaries. It was recognized that in order to avoid the risk of premature fracture, hot processing of the studied material should be conducted in the temperature range of 1000-1100 °C. At high temperatures, over 1100 °C, both materials suffered from a lack of acceptable hot workability. Rather, the wrought material showed a slight hot ductility trough around 1050 °C that could be attributed to the segregation of detrimental solute atoms such as S and P to the grain boundaries. The grain boundary decohesion was controlling the fracture mechanism of the wrought material. Due to the absence of extensive DRX in the cast material, the incipient melting, void formation, and decohesion of precipitates were found responsible for the final fracture.  相似文献   

12.
通过Gleeble 1500热模拟试验机对含钛微合金钢SAPH440的连铸坯在1400~600℃温度区间内的高温延塑性进行了测试,对试样的断口形貌及组织进行了观察。确定tL~1350℃之间为连铸坯的第I脆性区,950~725℃之间为连铸坯的第Ⅲ脆性区;第Ⅲ脆性区塑性降低主要是由连铸坯中Al N的析出和晶界网状铁素体的形成造成。提高连铸机顶弯或矫直温度大于950℃可以减少连铸坯表面裂纹的产生。  相似文献   

13.
奥氏体不锈钢激光焊接过程中残留液体金属的在线观察   总被引:1,自引:1,他引:0  
激光焊接时较快的冷却速度,有可能促进凝固热裂纹的生成,而凝固热裂纹的生成与凝固温度区间内的残留液体金属行为直接相关.采用由高速摄像机和光学显微镜头组成的摄像装置,针对SUS304,SUS316,SUS310S等3种奥氏体不锈钢激光焊接熔池后端残留液体金属的凝固行为进行高速高倍在线观察,对不同焊接速度下的熔池凝固行为进行了分析,并对3种材料凝固前沿残留液体金属的存在范围进行了量化比较.结果表明,在线观察法可辨别的残留液体金属是固液相共存区间的一部分,在线观察得到的残留液体金属的存在范围与热裂纹试验获得的热裂纹敏感性有较好的对应关系.  相似文献   

14.
Investigations have been carried out to study the hot corrosion cracking and crack propagation in 304 type stainless steel at 700°C. Kerosene was used as the base fuel to which CS2 was added in controlled quantities to obtain different sulphur contents (2.5% and 5%). Crack propagation tests were carried out at three stress levels. It has been observed that an increase in the sulphur content of the fuel reduces the crack initiation time, increases the crack propagation rate and decreases the rupture life. The crack growth rate plotted against the LEFM (linear elastic fracture mechanics) parameter K resulted in a sigmoidal type of relation, which could be well correlated by a model based on COD approach. The threshold stress intensity factor K0 is reduced with increasing sulphur content. Fractographic studies by SEM and light microscope revealed crack propagation through grain boundaries, which were weakened by the formation of low melting sulphides.  相似文献   

15.
采用选区激光熔化技术(Selective laser melting, SLM)成功制备了316L不锈钢块体件,借助光镜(OM)和扫描电镜(SEM)及维氏硬度计研究了不同时效工艺(时效温度分别为650 ℃和850 ℃)对SLM成形316L不锈钢块体件显微组织以及显微硬度的影响。结果表明,SLM成形316L不锈钢块体件显微组织主要由细小柱状晶和蜂窝状晶粒组成。“层-层”和“道-道”熔池边界清晰可见,经固溶时效后边界基本消失,但晶界清晰可见,再结晶晶粒呈合并生长方式长大。650 ℃时效时,试样中少量M23C6分布于晶界,显微硬度相对较高;随着时效温度的升高,850 ℃时效后试样的晶粒进一步长大,沿晶界形成了大量不连续M23C6。  相似文献   

16.
Abstract

To elucidate the microcracking (ductility dip cracking) mechanism in the multipass weld metal of alloy 690, the hot ductility of the reheated weld metal was evaluated using three different filler metals with varying contents of impurity elements such as P and S. Hot ductility of the weld metal decreased at temperatures over 1400 K, and the weld metal containing a low quantity of impurity elements showed much higher ductility than that containing a high quantity of impurity elements. Local deformability at high temperature of the alloy 690 reheated weld metal was compared with that of Invar alloy. Grain boundary sliding in alloy 690 occurred not in the intermediate temperature range (800–1000 K), where grain boundary sliding was activated in Invar alloy, but at high temperatures just below the melting temperature of alloy 690. The computer simulation of microsegregation suggested that the deterioration of hot ductility is caused by the grain boundary segregation of impurity elements during the multiple thermal cycling. The ductility dip cracking in the reheated weld metal resulted predominantly from the embrittlement of grain boundaries due to the imbalance between intergranular strength and intragranular strength at high temperature.  相似文献   

17.
在HRS定向凝固设备上进行了合金热裂试验,采用半定量方法评定了定向凝固Al-Cu和Renel25合金热裂倾向。观察了合金的晶界,并分析讨论了其对合金热裂的影响。用晶界状态分析的结果与试验结果完全一致。证明了晶界状态对热裂纹的形成有重要影响,其影响包括对晶间结合力的破坏作用和对晶界凝固收缩的补偿作用。晶界状态对热裂影响的综合作用取决于晶界低熔点相的分布和数量。  相似文献   

18.
通过Gleeble热模拟实验机在1000~1200℃,应变速率为0.01~10 s~(-1)条件下的近等温热模拟压缩实验,建立了316LN双曲正弦的流动应力预测模型及其热加工图。该流动应力预测模型考虑了实验过程中塑性变形和摩擦引起的温升,对流动应力进行了修正,考虑应变对流动应力预测模型参数的影响,获得了统一流动应力预测模型,模型预测值与实验值的相关系数为0.992,平均相对误差为4.43%;热加工图基于Prasad动态材料模型分别获得了不同应变速率、温度条件下的能量耗散率和失稳系数;分析了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:实验条件下最大能量耗散率值为0.38,且高应变速率下失稳,并通过显微组织分析对热加工图进行了验证。  相似文献   

19.
Abstract

Shielded metal arc welding electrodes of a modified E316-15 austenitic stainless steel, for service at 673–823 K with delta ferrite in the range of 3–7 ferrite number, have been developed indigenously for welding of 316L(N) stainless steel structural materials for the Indian Prototype Fast Breeder Reactor. Delta ferrite content in weld metals for high temperature service is restricted for limiting the formation of embrittling secondary phases during service. To study the effect of high temperature exposure on microstructure and mechanical properties, the 316 weld metal was aged at three different temperatures of 923, 973 and 1023 K, for various durations up to 500 h. The activation energy for the transformation of delta ferrite has been estimated to analyse the mechanism associated with the micro structural changes that led to the deterioration in toughness on elevated temperature aging of this weld metal.  相似文献   

20.
Hot ductility studies have been performed on C-Mn and C-Mn-Nb steels with an approach to simulate the effect of cooling conditions experienced by steel in secondary cooling zone during continuous casting. Thermal oscillations prior to tensile straining deteriorate hot ductility of steel by deepening and widening the hot ductility trough. C-Mn steels are found to exhibit ductility troughs in three distinct zones whereas C-Mn-Nb steel shows drop in ductility only at low temperature in the vicinity of ferrite transformation temperatures. Start of ferrite transformation in steels causes yield ratio to increase while work hardening rates and strength coefficient decrease with decrease in test temperature in presence of thermal oscillation prior to tensile testing. Inhibition of recrystallization due to build-up of AlN particles along with the presence of MnS particles in structure and low work hardening rates causes embrittlement of steel in austenitic range. Alloying elements enhancing work hardening rates in austenitic range can be promoted to improve hot ductility. The presence of low melting phase saturated with impurities along the austenitic grain boundaries causes intergranular fracture at high temperature in C-Mn steels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号