首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
主要以氟代羟基磷灰石(FHA)悬浮液为原料,采用悬浮液等离子喷涂技术,在钛基体表面制备了FHA涂层。通过XRD,SEM,FT-IR以及XPS等测试手段,对不同喷涂功率制备的FHA涂层进行表征,并测试其性能。结果表明,粉体及制备的涂层主要晶相为HA,但是粉体进入等离子火焰形成涂层的过程中发生分解,生成α-磷酸钙(α-TCP),β-磷酸钙(β-TCP),以及磷酸四钙(TTCP)等分解产物。XPS结果证明F离子成功取代了OH基团进入HA晶格中,导致FHA涂层的抗溶解性明显提高。电化学实验结果表明,随着喷涂功率的增加,涂层的抗腐蚀性能提高。  相似文献   

2.
周生健  白玉  迟柏祥  尹雪  马文 《表面技术》2019,48(7):340-346
目的 采用悬浮液等离子喷涂技术(SPS)在纯钛表面制备氟代羟基磷灰石/硅酸钙(FHA/CS)生物复合涂层。方法 利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)及能谱仪(EDS)对复合涂层的物相组成、组织结构和显微形貌进行分析。通过动电位极化测试和体外生物活性测试,分析复合涂层在模拟体液(SBF)中的腐蚀行为和类骨磷灰石形成能力。通过电感耦合等离子体光谱仪(ICP)分析涂层中Ca2+的释放行为,评估复合涂层的化学稳定性。采用划痕法表征涂层的结合强度。结果 SPS制备的复合涂层具有粗糙的表面和层片堆叠结构。涂层中FHA和CS两相分布均匀,结晶性良好。复合涂层临界载荷达到111.43 N,比单一FHA涂层提高62.5%。与纯钛相比,涂层样品具有较高的腐蚀电位(Ecorr)和较低的腐蚀电流密度(Jcorr)。在SBF溶液中浸泡3天,涂层样品表面被类骨磷灰石完全覆盖。ICP结果表明,复合涂层中Ca2+释放速率低于单一CS涂层。结论 通过SPS在纯钛表面制备的FHA/CS复合涂层具有良好的生物活性、耐腐蚀性能和与基体的结合强度,复合涂层中FHA组分的存在有利于提高涂层的化学稳定性。  相似文献   

3.
In this study, the hydroxyapatite (HA)‐titanium (Ti, 20 wt.%) multiwalled carbon nanotubes (MWCNTs, 1 wt.%) composite coating was applied on the NiTi alloy by using the electrophoretic deposition (EPD) technique. The morphologies and the phase structures of the coatings were investigated by the FESEM and XRD analysis, respectively. The corrosion behaviors of the coated NiTi samples were investigated using the polarization and electrochemical impedance spectroscopy tests in a simulated body fluid (SBF). The amounts of the released Ni ions from the coated NiTi were studied in the SBF. The results of the electrochemical tests revealed the corrosion resistance of the NiTi coated with HA was further improved by the addition of the Ti and MWCNTs to the HA coating. The current density and corrosion resistance of the NiTi alloy changed from 2.52 μA.cm?2 and 24.13 kΩ to 0.91 nA.cm?2 and 5.92 MΩ after coated with the HA‐Ti‐MWCNTs composite coating. Also, the number of nickel ions released from the surface of the NiTi alloy to the SBF medium suppressed from 11.8 to 0.08 μgr.L?1, after coating with HA‐Ti‐MWCNTs. Also, the cellular proliferation in the culture medium consisting of the NiTi alloy coated with the HA‐Ti‐MWCNTs improved significantly (compared with that of the NiTi alloy) as shown no toxicity in the cell culture medium.  相似文献   

4.
Interface activation and surface characteristics of Ti/TiN/HA film coated sintered stainless steels (SSS) have been investigated by electrochemical and biocompatibility tests. HA (hydroxyapatite), Ti, and Ti/TiN film coatings were applied using electron-beam deposition method (EB-PVD). Ti, Ti/TiN, and Ti/TiN/HA film coated surfaces and layers were investigated by SEM and XPS. The coated films showed micro-columnar structure, and Ti/TiN/HA films were denser than Ti or HA-only film. The corrosion resistance of the HA coating was similar to that of Ti/TiN/HA film coating when Cu content reached 4 wt.%, but the corrosion resistance of the HA coating decreased when Cu content increased from 4 wt.% in 0.9% NaCl solution. Therefore, HA-only coating could ensure corrosion resistance when Cu content does not exceed 4 wt.%. The results of biocompatibility tests of SSS on dogs showed that bone formation and biocompatibility were favorable when Cu content did not exceed 4 wt.%. The biocompatibility with bone was generally favorable in Ti/TiN/HA film coating and HA-only coating, while bone formation was somewhat faster for the HA film coated surface than for the Ti/TiN/HA film coating. Also, good cell growth and osseointegration without toxicity were observed.  相似文献   

5.
The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47?MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.  相似文献   

6.
为了改善钛合金种植体在体液中的腐蚀及摩擦腐蚀行为,延长其在人体环境中的服役时间,在微弧氧化 (MAO)膜层上采用溶胶凝胶(Sol-gel)法于羟基磷灰石(HA)和氧化石墨烯(GO)的混合溶胶中浸渍提拉成膜,从而在 Ti6Al4V 合金表面成功地制备了 GO/ HA/ MAO 复合膜层。 结果表明,MAO 膜层表面的微孔及微球被 GO/ HA 薄膜有效的覆盖且较为致密;膜层的物相组成主要为金红石相及锐钛矿相的 TiO2、HA、SiO2 和GO;根据电化学腐蚀和摩擦腐蚀结果分析知,GO/ HA/ MAO 复合膜层在模拟体液(SBF)中的耐蚀性及耐摩擦腐蚀性相比于 MAO 膜层和 Ti6Al4V 基体均得到了显著提高。  相似文献   

7.
通过电化学沉积方法,在生物降解镁合金表面覆盖含氟羟基磷灰石(FHA)涂层和缺钙羟基磷灰石(CDHA)涂层。采用X射线衍射、傅立叶变换红外光谱、透射电子显微镜、扫描电子显微镜和能量色散X射线光谱研究涂层特性。结果表明:涂覆纳米FHA涂层的样品具有垂直于样品表面的纳米针状结构,比涂覆CDHA涂层样品的结构更致密和更均匀。纳米FHA涂层比纳米CDHA涂层具有更小的晶粒尺寸,分别为65 nm和95 nm。然而,CDHA涂层比FHA涂层更厚,厚度分别为19μm和15μm。通过极化、浸泡和析氢实验研究的腐蚀行为表明:纳米FHA涂层和纳米CDHA涂层显著降低腐蚀速率并引起钝化。纳米FHA和纳米CDHA涂层可以加速骨状磷灰石层的形成,相比未覆盖的镁合金可以显著减少溶出速率。纳米FHA涂层能对镁合金提供有效的防护并具有更高的腐蚀性能。因此,覆盖纳米FHA涂层的镁合金在整形外科领域具有良好的应用前景。  相似文献   

8.
A new hydrothermal method is proposed, which enables us to prepare thin hydroxyapatite (HA) ceramic coatings on Ti substrates with a curved surface at low temperatures. The method uses double layered capsules in order to produce a suitable hydrothermal condition; the inner capsule encapsulates the coating materials and a Ti substrate, and the outer capsule is subjected to isostatic pressing under the hydrothermal condition. In this study, it is demonstrated that a pure HA ceramic layer with the thickness of 50 μm could be coated to a Ti cylindrical rod at the low temperature as low as 135 °C under the confining pressure of 40 MPa. The HA coating layer had a porous microstructure with the relative density of approximately 60%. Pull-out tests were conducted to obtain an estimate for the adhesion properties of the HA coating prepared by the double capsule method. The shear strength obtained from the pull-out tests was in the range of 4.0–5.5 MPa. It was also shown that the crack propagation occurred within the HA coating layer, not along the HA/Ti interface in the pull-out tests. This observation suggests that the fracture property of the HA/Ti interface was close to or higher than that of the HA ceramics only. It is expected that the low temperature double capsule method may provide a useful method for producing bioactive HA ceramic coatings on curved prostheses surfaces.  相似文献   

9.
Titanium (Ti) and its alloys are widely used as candidate materials for biomedical implants. Despite their good biocompatibility and corrosion resistance, these materials suffer from corrosion after implantation in biological environments. The aim of this research work is to study the effect of two coatings on biocompatibility and corrosion behavior of Ti-6Al-4V biomedical implant material. Hydroxyapatite (HA) and hydroxyapatite/titanium dioxide (HA/TiO2) coatings were thermal-sprayed on Ti-6Al-4V substrates. In the latter case, TiO2 was used as a bond coat between the substrate and HA top coat. The corrosion behavior of coated and un-coated samples in Ringer’s solution was studied by potentiodynamic and linear polarization techniques. Before and after corrosion testing, XRD and SEM/EDS techniques were used for the analysis of phases formed and to investigate microstructure/compositional changes in the coated specimens. The cellular response was analyzed by the MTT (microculture tetrazolium) assay. The results showed that both the HA, as well as, the HA/TiO2 coatings significantly increased the corrosion resistance of the substrate material. The HA coating was found to be more biocompatible as compared to the un-coated and HA/TiO2-coated Ti-6Al-4V alloy.  相似文献   

10.
A biomimetic method has been used to prepare silicon-substituted hydroxyapatite coatings on titanium substrates. The surface structures of the coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR). Si substituted hydroxyapatite (Si-HA) coatings with different Si contents were deposited successfully on the titanium substrate by immersing the pretreated titanium substrate into silicon containing supersaturated solutions (SSS) with different SiO32− concentrations. The pretreatment of the Ti substrate in a mixed alkaline (NaOH + Ca(OH2)) followed by a heat treatment produced a 3D porous surface structure with rutile and CaTiO3 as main phases, which contributed mainly to the fast precipitation and deposition of Si-HA. FTIR results showed that Si in the Si-HA coating existed in the form of SiO44− groups. The cross-section microstructure was observed by scanning electronic microscopy and the shear strength was tested. The coating was about 5-10 μm in thickness and no interval was observed at the interface between the coating and the substrate. Shear strength testing showed that Si-HA/Ti exhibited higher shear strength than HA/Ti due to the existence of the SiO44− group in the coating.  相似文献   

11.
There have been a significant advances made in the field of bioceramics, particularly hydroxyapatite (HA) during the past 10 years. Emphasis has now shifted towards designing HA with enhanced bioactivity for bone tissue repair. The aim of this study was to assess whether surface wettability can be correlated with cellular interactions with silicon-substituted hydroxyapatite (SiHA)-coated titanium (Ti) substrates. SiHA thin coatings of varying Si compositions were deposited on Ti substrates via a magnetron co-sputtering technique. These coatings were then subjected to an in vitro study using primary human ostoeblast (HOB) cells, to evaluate their biological property. HOB cells showed initial poor adhesion and spreading on hydrophobic Ti surface. The application of HA or SiHA thin coatings on Ti substrates by magnetron co-sputtering technique renders the surface more hydrophilic, with water contact angles between 30 and 40°. HOB cells attached, spread and proliferated well on these coatings. Enhanced calcification (formation of calcium phosphate nodules across the collagenous matrices) was observed on SiHA coatings with increasing Si content. This interdisciplinary paper highlighted that enhanced bioactivity was associated with surface wettability. Producing a nanostructured HA coating on a Ti substrate by magnetron sputtering resulted in the promotion of cell proliferation and calcification, and the latter was further enhanced with Si substitution. Hence, SiHA thin coating holds great potential as an alternative dental material.  相似文献   

12.
Titanium (Ti) and hydroxyapatite (HA) coatings have been prepared via air (APS) and vacuum plasma spraying (VPS), and then their composition, structure, bonding strength and bioactivity were examined. The results obtained reveal that in APS process many of Ti were oxidized, but in VPS the oxidization was avoided. VPS Ti coating possesses better bonding condition than APS Ti coating. As for HA coating, higher crystallinity has been obtained while the coating was deposited by VPS as compared with APS. The simulated body fluid (SBF) tests show that both of APS and VPS HA coatings possess good bioactivity. As compared with APS, VPS is recommended as a better method to deposit Ti and HA coatings that can be applied as hard tissue replacement implants.  相似文献   

13.
This work is focused on developing zinc-doped hydroxyapatite—zeolite (ZnHA—Zeo) and polycaprolactone (PCL) composite coatings on magnesium (Mg) substrate to improve the corrosion resistance and antimicrobial properties. Dip-coating technique was used to coat ZnHA—Zeo/PCL on the Mg substrate at room temperature. The samples were subjected to field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), energy dispersive X-ray spectroscopy (EDX) and antimicrobial potential. Results demonstrated that composite coatings consist of HA, scholzite, zeolite, and PCL phases. EDX spectra indicated the presence of calcium (Ca), silicon (Si), aluminum (Al), zinc (Zn), phosphorus (P) and oxygen (O). The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226–260 μm. Zinc-doped HA—Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion. Doped ZnHA—Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E. coli as compared to HA—Zeo sample. Altogether these results showed that the ZnHA—Zeo coatings not only improved the corrosion resistance, but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.  相似文献   

14.
The aim of the present work is to examine the characterization and corrosion behavior of functional gradient hydroxyapatite coating deposited on titanium-based alloy by plasma spray coating process. The functionally graded coating is designed to provide the crystalline hydroxyapatite at the interface with metallic substrate and the amorphous hydroxyapatite at the outer surface. It is considered that the top amorphous layer of hydroxyapatite has higher bioactivity, and its initial dissolution will lead to bone tissue growth enhancement and bonding, whereas the underneath crystalline hydroxyapatite coating after heat treatment is expected to enhance the long-term stability of coating at the interface with metal. The heat treatment of the underneath as-sprayed coating for crystallization was performed at 700 °C for 1 h. The characterization of the coatings was performed by various techniques such as scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction analysis, surface roughness, and microhardness. It was observed from potentiodynamic scan that heat-treated coating exhibited better dissolution resistance as compared to the as-sprayed coating. Heat treatment of the hydroxyapatite coating resulted in improved crystallinity of the coating which may provide long-term stability to the coating.  相似文献   

15.
The mechanical properties and adhesion behaviour of sol-gel derived hydroxyapatite (HA) nanocoatings on commercially pure (cp) titanium (Ti) and Ti6Al4V alloy have been determined and related to anodising treatment. The surface roughness, wetting and coating characteristics were examined using profilometry, contact angle, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Nano-indentation was used to determine the Young's modulus and hardness of the coatings, while microtensile tests were used to introduce controlled strains in the coatings through the cp Ti and TiAl6V4 alloy substrates, from which the strength, fracture toughness and adhesion behaviour could be ascertained based on multiple cracking and delamination events. The toughness of the HA coatings is found to be slightly lower to that of equivalent bulk pure HA ceramics. The substrate and the anodized layer thickness have the most influence on the interfacial adhesion of HA, with nanocoatings on Ti6Al4V exhibiting superior interfacial bonding in comparison to cp Ti.  相似文献   

16.
Ceramic coatings are deposited on biodegradable magnesium alloys by physical vapor deposition to reduce the electrochemical activity in the simulated physiological environment. Although an interlayer is generally used to reduce the mismatch between the hard coating and soft substrate, the effects of the interlayer on the electrochemical corrosion behavior have seldom been explored. In this work, AlOxNy ceramic coatings were deposited on AZ31 magnesium alloys with Al or Ti interlayers. Polarization tests and electrochemical impedance spectroscopy (EIS) were conducted to evaluate the corrosion resistance in the cell culture medium. The AlOxNy ceramic coating significantly improved the bio-corrosion resistance of the magnesium alloy, but the Ti interlayer accelerated the corrosion rate. In comparison, although the addition of an Al interlayer led to smaller enhancement in the surface mechanical properties of the AlOxNy coating, corrosion could be impeded effectively. Our results indicate that an Al interlayer is preferred over Ti and the corrosion failure mechanism is discussed from the perspective of defects.  相似文献   

17.
To enhance the bonding between hydroxyapatite (HA) coating and titanium alloy substrate, HA/TiO2 composite coatings have been fabricatedvia plasma spraying. Bonding strength evaluation, simulated body fluid tests, and cell culturein vitro were carried out to characterize the composite coatings. The results obtained showed that the addition of TiO2 to HA coating improved the bonding strength of the coating significantly. After being immersed in simulated body fluid (SBF) for a period, the surfaces of HA/TiO2 composite coatings were completely covered by carbonate-containing apatite, which indicated that the coatings possess good bioactivity. Thein vitro cell culture indicated good cytocompatibility for HA/TiO2 composite coatings.  相似文献   

18.
This paper presents a comparative study of antimicrobial and electrochemical performance of CoCrMo alloy surface treated with hydroxyapatite coating or silver nanoparticles (nAg) in the presence/absence of albumin addition. Nanoparticles dimension was quantified using dynamic light scattering. Antibacterial activity was evaluated by a spread plate method, while electrochemical characterization of CoCrMo samples coated and uncoated was studied by open circuit potential and cyclic polarization experiments. Furthermore, all surface coatings characterization was investigated by transmission electron microscopy, scanning electron spectroscopy, and energy-dispersive x-ray spectroscopy. The highest corrosion rate in simulated body solution (SBF) is for untreated CoCrMo alloy, and the lowest value is for CoCrMo alloy treated with nAg after addition in SBF of 80 g/L albumin. Only the surface treated with nAg has antibacterial effect.  相似文献   

19.
Nanosized hydroxyapatite (HA) powders were prepared by a chemical precipitation method and electrophoretically deposited on Ti6Al4V substrates. The powders were calcined before the deposition process in order to obtain crack-free coating surfaces. As an inner layer between Ti6Al4V substrate and HA coating, nanosized titanium dioxide (TiO2) powders were deposited, using different coating voltages, in order to connect substrate and HA tightly. Moreover, this layer is considered to be acting as a diffusion barrier, reducing the HA decomposition due to ion migration from the metal substrate into the HA. After the sintering stage, adhesion strengths of coatings were measured by shear testing, phase changes were studied by X-ray diffraction, and coating morphology was analyzed through scanning electron microscopy observations. Results showed that usage of the TiO2 inner layer prevented HA decomposition. Furthermore, decreasing the voltage used in TiO2 deposition resulted in crack-free surfaces and increased adhesion strength of the overall coating.  相似文献   

20.
The cross-sectional analysis on hydroxyapatite (HA) coating and HA TiO2 composite coating was conducted by using electron probe microanalyser (EPMA). The results reveal that annealing at 650℃ leads to the cracking within the HA coating or along the coating/substrate interface. The ribbon-like regions in HA coating are verified to contain less PO4^4- groups resulted from the high temperature melting of HA particles in plasma flame. From the viewpoint of microstructural observation, it can be concluded that the addition of TiO2 into HA coating can effectively strengthen and toughen the whole coating system with a shift of the well-bonded interface from the THA (top HA) coating/HTBC (HA TiO2 bond coat) interface in the as-sprayed THBC (top HA-HTBC) coating to the HTBC/Ti substrate interface in the heat treated THBC coating. The THA coating bonds well to Ti substrate per-haps via its TiO2 hobnobbing with the Ti oxides formed on the Ti substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号