首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono‐carboxylic acids (stearic, palmitic, myristic, lauric, mono‐carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 °C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na2SO4 solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h‐50°C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution.  相似文献   

2.
In this study, Co(ss)/WSi2-CoWSi nanocomposite was synthesized via mechanical alloying and heat treatment. In order to fabricate bulk composite, 50-h-milled powders were cold pressed and subsequently sintered at 1150 °C for 4 h in Ar atmosphere. Phase development and structural changes were investigated by x-ray diffraction technique and scanning electron microscopy. After various milling times, the powders were investigated by differential thermal analysis and microhardness measurements. The starting powder mixture has two allotropic structures of Co (fcc and hcp). After 10-h milling, an allotropic transformation takes place in Co (fcc to hcp), and a composite microstructure consisting of cold-welded Co, W, and Si phases is formed. After 20 h, new peaks related to WSi2 appeared in x-ray diffractograms. Increasing milling time to 50 h caused the formation of (Co, W, and Si) solid solution, WSi2, and CoWSi phases. DTA analysis of 30- and 50-h-milled powders confirmed an increase in the degree of ordering. The 50-h-milled powders exhibited high microhardness value of about 1050 HV0.1. XRD result of sintered material demonstrated that only ordered Co(ss)/WSi2-CoWSi nanostructured composite is present. Consolidated sample showed 12% porosity. Nanoindentation results showed that the sintered composite an exhibited a high hardness of 700 HV0.1 with an elastic modulus of 107 GPa.  相似文献   

3.
The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.  相似文献   

4.
During drilling process, if oil and gas overflow containing H2S enters drilling fluids, the performance of drill pipes will decline significantly within a short time. In this paper, S135 drill pipe specimen was immersed in the saturated solution of H2S at room temperature for 6, 12, 18, and 24 h, respectively. The tensile properties and impact properties of S135 drill pipe were determined before and after immersion for comparison. In addition, the S135 specimens were immersed for 3 days at 80 °C to determine the changes in fatigue performance. The test results indicated that the yield strength of S135 material fluctuated with immersion time increasing and the tensile strength slightly varied with immersion time. But the plasticity index of S135 decreased significantly with the increase in immersion time. The impact energy of S135 steel also fluctuated with the increase in immersion time. After 3-day immersion at 80 °C, the fatigue properties of S135 steel decreased, and fatigue life showed the one order of magnitude difference under the same stress conditions. Moreover, fatigue strength was also decreased by about 10%. The study can guide security management of S135 drill pipe under the working conditions with oil and gas overflow containing H2S, reduce drilling tool failures, and provide technical support for drilling safety.  相似文献   

5.
In the present work, the corrosion protection of aluminum alloy AA2024-T3 has been studied in NaCl solution, with and without the addition of cerium (III) chloride heptahydrate. The corrosion inhibitor efficiency after immersion into 10 mM NaCl, with or without 3 mM of CeCl3·7H2O at 20°C, 40°C, and 60°C was investigated. The performed quantitative tests include electrochemical techniques, such as the method of quasipotentiostatic polarization (Tafel extrapolation), cyclic polarization, and electrochemical impedance s pectroscopy to determine corrosion rate (vcorr), inhibition efficiency (η %), protective ability (γ), degree of coverage (ϑ), and pitting nucleation resistance. The samples were analyzed with scanning electron microscopy and energy dispersive X-ray analysis to evaluate and characterize the precipitates formed on the surface of aluminum samples and to determine dominant type of corrosion. The formation of Ce3+ precipitates occurred on cathodic intermetallic sites and the surface, in general, resulting in improved corrosion resistance. Tested cerium (III) chloride heptahydrate proved to be an effective inorganic corrosion inhibitor for AA2024-T3 in chloride solution, which, by the action of cerium ions, reduced corrosion on the surface of the studied aluminum alloy.  相似文献   

6.
CMSX-4 samples were exposed to type II hot corrosion conditions (700 °C, 300 vpm SO X in air) for between 12.5 and 500 h. Two deposits (4/1 molar ratio Na2SO4/K2SO4 and 49/1 molar ratio Na2SO4/NaCl) were tested with fluxes between 0 and 10 μg cm?2 h?1. Dimensional metrology studies showed similar metal losses for samples exposed with the same flux but to different salts. Duplicate samples exposed under identical conditions gave repeatable metal loss data. Samples exposed to low deposition fluxes for short exposure periods maintained surfaces in incubation despite the low chromium content of CMSX-4. For higher fluxes, incubation times and propagation rates were determined.  相似文献   

7.
This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg3Bi2 and Mg3Sb2 particles while Mg17Al8Ca0.5 and Mg2Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate.  相似文献   

8.
The corrosion behaviour of three phosphoric irons P1 (Fe-0.11P-0.028C), P2 (Fe-0.32P-0.026C) and P3 (Fe-0.49P-0.022C) has been studied in simulated concrete pore solution (saturated Ca(OH)2 solution) containing different chloride concentration. This has been compared with that of two commercial concrete reinforcement steels, a low carbon steel TN (Fe-0.148C-0.542Mn-0.128Si) and a microalloyed corrosion resistant steel CS (Fe-0.151C-0.088P-0.197Si-0.149Cr-0.417Cu). The beneficial aspect of phosphoric irons was revealed from potentiodynamic polarization experiments. The pitting potentials and pitting nucleation resistances for phosphoric irons and CS were higher than that for TN. Electrochemical impedance spectroscopy (EIS) studies revealed thickening and growth of passive film as a function of time in case of phosphoric irons and CS in saturated Ca(OH)2 pore solutions without chloride and in the same solution with 0.05% Cl and 0.1% Cl. In case of TN, breakdown of passive film resulted in active corrosion in simulated pore solution containing 0.1% Cl. Linear polarization resistance measurements complemented EIS results. Visual observations indicated that phosphoric iron P3 was immune to corrosion even after 125 days of immersion in saturated Ca(OH)2 solution containing 5% NaCl. The good corrosion resistance of phosphoric irons in simulated concrete pore solution containing chloride ions has been related to the formation of phosphate, based on ultraviolet spectrophotometric analysis and Pourbaix diagram of phosphorus-water system.  相似文献   

9.
Nickel–tungsten multi-walled carbon nanotubes (Ni–W/MWCNTs) nanocomposite coatings were co-electrodeposited in the ammonium-free bath by means of constant direct current coulometry. The results indicate that the amount of MWCNTs incorporated into the nanocomposite coatings has a key role in the improvement of their microhardness and corrosion resistance. The corrosion behavior of the coatings was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods in three corrosive media of 3.5 wt% NaCl, 1.0 M NaOH, and 0.5 M H2SO4. The experimental data of the corrosion current density (jcorr), corrosion rate (CR), the polarization resistance (Rp), and microhardness indicate that the presence of MWCNTs in coatings improves the quality of those coatings. The surface morphology of the coatings and the elemental analysis data were obtained by scanning electron microscopy and energy dispersive X-ray microanalysis respectively. As the results showed, the coatings were uniform and crack-free in the presence of 5.3 wt% carbon. Also, a microhardness test revealed that the nanocomposite coating containing 5.3 wt% carbon obtained in an ammonium-free bath which provided the higher content of tungsten had the highest hardness value among others.  相似文献   

10.
The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.  相似文献   

11.
The corrosion behaviors of Fe83-XC1B11Si2P3CrX (X = 0, 1, 2, and 3 at%) amorphous alloys in 0.1 M NaCl solution have been investigated by immersion and electrochemical tests. With the addition of Cr content from 0 to 3 at%, the corrosion rate of amorphous alloys gradually decreases from 2.57 × 10−1 to 1.04 × 10−1 mm·year−1. The minor addition of Cr improves the corrosion resistance through the increase in the Ecorr value, which makes it easy to reach a passive state and suppress pitting corrosion. The corroded morphology and products of amorphous alloys have been tested by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The SEM/EDS analysis shows that the high corrosion resistance is due to the formation of dense and stable chromium oxide during immersion in NaCl solutions.  相似文献   

12.
《Corrosion Science》1987,27(8):859-867
Alloy 600 tube specimens were subjected to corrosion in de-aerated 0.1 M NaCl solution at 100–250°C at applied potentials more positive than the respective pit nucleation potentials, and in de-aerated 200 ppm CuCl2 solution at 150 and 280°C under open circuit conditions. In NaCl, the pits grew in depth proportionally to t0.3, t0.5 and t0.7 (t = time) at 100, 150 and 250°C, respectively. In CuCl2 at both 150 and 280°C, the pit deepening rate was proportional to t0.4. In both the solutions studied, the density of pits observed on the surface of specimens after the same time of corrosion at 100°C was less than at higher temperatures, whereas the pit depth was greater at 100°C than at higher temperatures. The morphology of pits was temperature dependent. The corrosion products accumulated on pit bottoms were enriched in Cr, Ti and S, and impoverished in Fe and Ni.  相似文献   

13.
An ultrathin, ordered and two-dimensional polymer coating was prepared on passivated iron by modification of 16-hydroxyhexadecanoate ion HO(CH2)15CO2 self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was examined by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M NaNO3 solution during immersion for many hours. Passive film breakdown on the polymer-coated electrode in the solution was not observed during immersion for 480 h, whereas that of the passivated one occurred at 18.1 h, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, around 99.9% in the initial region of the immersion time up to 72 h and more than 98.3% thereafter, indicating prominent cooperative suppression of iron corrosion in 0.1 M NaNO3 by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis.  相似文献   

14.
Corrosion behaviour of AZ31B magnesium alloy in different concentrations of NaCl solution saturated with CO2 was studied by electrochemical techniques, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray. The corrosion rate increases with increasing NaCl concentration both in the presence and absence of CO2. The corrosion rate in NaCl solution saturated with CO2 is bigger than that in single NaCl solution. The inhibitive effect of CO2 is also observed with immersion time increased in NaCl solution saturated with CO2, showing that CO2 reduces the average corrosion rate due to the formation of insoluble products.  相似文献   

15.
Magnesium phosphate conversion coating (MPCC) was fabricated on AZ31 magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+ and PO3?4 ions. The MPCC on AZ31 Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about 2.5 µm after 20 min of phosphating treatment. The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds. The MPCC showed a significant protective effect on AZ31 Mg alloy. The corrosion current of MPCC was reduced to about 3% of that of the uncoated surface and the time for the deterioration process during immersion in 0.5 mol/L NaCl solution improved from about 10 min to about 24 h.  相似文献   

16.
A thin protective layer was prepared on a zinc electrode by treatment in 1 × 10−3 M Ce(NO3)3 at 30 °C for 30 min and modification in 1 × 10−2 M H2O2 at 30 °C for 10 min. This layer was highly protective against corrosion of zinc in an aerated 0.5 M NaCl solution after immersion in the solution for many hours. The protective efficiencies of the modified layer were remarkably high, more than 96% in the region of the immersion time between 72 and 168 h and 94% at 720 h. The layer was composed of hydrated Ce3+ oxide containing Ce4+ which improved the protective ability of the layer.  相似文献   

17.
Die-cast AZ91D magnesium alloy samples have been submitted for anodizing at different potentials. Anodizing was conducted in an environmentally friendly solution which comprised 3 M KOH + 1 M Na2SiO3 at room temperature. The surface treatment was performed electrolytically at four different potentials: 3, 5, 8, and 10 V. The corrosion resistance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization curves obtained after 7 days of immersion in a 3.5 wt.% NaCl solution at room temperature. The porosity of the anodic films was estimated by means of the linear polarization method. SEM images revealed that the surface oxide was thicker for the anodic films obtained at 3 and 5 V. The films obtained at these potentials were more porous than those formed at 8 and 10 V. The results showed that the thickness of the anodic film had a significant effect on the corrosion behavior of the AZ91D, whereas the influence of the initial porosity was not significant.  相似文献   

18.
In an effort to utilize beneficial aspects of nanoparticles in providing corrosion and wear resistance, electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings were produced. Alumina particles with various contents from 5 to 20 g/L in bath were co-deposited within Ni-P deposits on mild steel (ms) substrate. Coatings were characterized by scanning electron microscopy (SEM) for morphology, energy dispersive analysis of x-ray EDAX for analyzing elemental composition and x-ray diffractometry for investigating the structural changes of their components. Electrochemical and immersion measurements were used to analyze corrosion behavior of the coatings in 3.5% NaCl solution. Wear resistance of the coating was measured by pin-on-disc method. The results indicated that the Ni-P-Al2O3 coatings provide the high hardness as compare to the Ni-P coating. Corrosion and wear resistance of coatings is observed to be superior to that of ms. Corrosion protection properties of the coatings are found to be affected with continuous exposure to the electrolyte. Coating with high concentration of alumina is exhibiting high wear resistance than Ni-P coating. Wear mechanism in case of Ni-P coating appears to be adhesive type and seems to change to abrasive type on introduction of alumina.  相似文献   

19.
Ni‐Si3N4 nanocomposite films with both the consecutive Ni crystallites and dispersed Si3N4 particles in the nanometer range have been fabricated using DC electroplating technique, and characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), and X‐ray diffraction (XRD). The corrosion resistance of the Ni‐Si3N4 nanocomposite film has been compared to that of pure Ni coating through polarization. Meanwhile, the corrosion process of Ni‐Si3N4 nanocomposite film in neutral 3.5% NaCl solution has been investigated using electrochemical impedance spectroscopy (EIS). The results show that the Ni‐Si3N4 nanocomposite film is more resistant to corrosion than the pure Ni coating. The corrosion of Ni‐Si3N4 nanocomposite film is controlled by electrochemical step, and the whole corrosion process is divided into two sequential stages. The main corrosion type of Ni‐Si3N4 nanocomposite films in neutral 3.5% NaCl solution is pitting.  相似文献   

20.
Prevention of iron corrosion in an aerated 0.1 M NaCl solution was investigated by polarization and mass-loss measurements of a passivated iron electrode covered with ultrathin and ordered films of two-dimensional polymers. The films were prepared on the passivated electrode by modification of a 16-hydroxyhexadecanoate ion self-assembled monolayer with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and alkyltriethoxysilane CnH2n + 1Si(OC2H5)3 (n = 8 or 18). Because crevice corrosion occurred at the initial stage of immersion in the solution preferentially, the edge of electrode covered with the polymer film was coated with epoxy resin. The open-circuit potentials of the covered electrodes in the solution were maintained high, more than −0.2 V/SCE for several hours, indicating that no breakdown of the passive film occurred on the surface. The protective efficiencies of the films were extremely high, more than 99.9% unless the passive film was broken down. The efficiencies after immersion for 24 h almost agreed with those obtained by mass-loss measurements. X-ray photoelectron spectroscopy and electron-probe microanalysis of the passivated surface covered with the polymer film after immersion in the solution for 4 h revealed that pit initiation on the passive film was suppressed by coverage with the polymer film completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号