共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PulsedLaserDepositionofBoronCarbonNitrideCoatingsHouQingrunandGaoJu(侯清润)(高炬)DepartmentofPhysics,TheUniversityofHongKong,Pokfu... 相似文献
3.
Mariia Rashkovets Aelita Nikulina Gleb Turichin Olga Klimova-Korsmik Marina Sklyar 《Journal of Materials Engineering and Performance》2018,27(12):6398-6406
Phase composition and structural features of nickel-based alloy EP741 obtained by high-speed direct laser deposition were discussed in the paper. The technology of high-speed direct laser deposition has been successfully applied during the formation of samples with the various operating parameters of the experimental device. The laser power was between 450 and 1200 W, the scanning speed was 1.2 mm/s, the powder feed rate was 45 g/min, and the laser beam diameter was 1.2 mm. The structure and phase composition of the initial material and as-deposited samples were studied using optical and scanning electron microscopy, x-ray analysis and transmission electron microscopy. The investigation has shown that spherical particles of powder (EP741) can be used to form products by additive manufacturing with the presence of additional heat treatment, since almost all the as-deposited samples obtained do not contain cracks, and large volume of pores was observed only in the sample obtained with the power of 450 W. In addition, the phase composition of the as-deposited samples showed a high content of precipitating phase Ni3(Al, Ti) in matrix, which is coherent to the solid solution based on nickel. In theory, the presence of Ni3(Al, Ti) phase corresponds to the heat-treated nickel-base alloy obtained by standard methods of processing. 相似文献
4.
5.
F. R. Caliari F. S. Miranda D. A. P. Reis A. M. Essiptchouk G. P. Filho 《Journal of Thermal Spray Technology》2017,26(5):880-889
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface (R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness (R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties (H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2). 相似文献
6.
Burkov A. A. Kulik M. A. 《Protection of Metals and Physical Chemistry of Surfaces》2020,56(6):1217-1221
Protection of Metals and Physical Chemistry of Surfaces - This work is devoted to the deposition of Cr3C2 chromium carbide powder on steel 35 by electrospark treatment in titanium granules. Three... 相似文献
7.
Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle–substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications. 相似文献
8.
9.
Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates. The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy. The microstructure and morphology of the coatings were observed by scanning electron microscopy. The hardness and elastic modulus of the coatings were estimated by nanoindentation. The measurements of adhesive forces of the coatings were performed with scratch tester. The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates. The interface between the Pt coating and substrate exhibited no evidence of delamination. The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate. The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa, respectively. The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa, respectively. The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N, respectively. The Pt and Ir coatings adhered well to the Ti alloy substrates. 相似文献
10.
11.
Guolu Li Linsong Gu Haidou Wang Zhiguo Xing Lina Zhu 《Journal of Thermal Spray Technology》2014,23(3):525-529
This paper studied the microstructures and dielectric properties of PZT coatings prepared by supersonic plasma spraying. Samples of the PZT coatings were evaluated by various techniques. The phases and microstructures of the coatings were investigated by XRD, SEM, and TEM, respectively. The results showed that the coatings deposited on steel substrate had a dense microstructure, and there was no phase transformation during spraying. Additionally, the Curie temperature of the PZT coatings was about 370 °C by the investigation of dielectric constant. 相似文献
12.
13.
M. Gardon C. Fernández-Rodríguez D. Garzón Sousa J. M. Doña-Rodríguez S. Dosta I. G. Cano J. M. Guilemany 《Journal of Thermal Spray Technology》2014,23(7):1135-1141
This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS) supported on titanium sub-oxide (TiO2?x ) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO2?x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25® photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide. 相似文献
14.
Makoto Watanabe Masayuki Komatsu Seiji Kuroda 《Journal of Thermal Spray Technology》2012,21(3-4):597-608
WC-Co/aluminum multilayer coatings have been developed by using warm spray deposition to improve fracture toughness and damage tolerance of conventional WC-Co coatings and to investigate the effects of ductile layer addition on their fracture properties. Prior to depositing the multilayer coatings, the mechanical properties of three metal coatings of aluminum, copper, and titanium, which were deposited by warm spraying, were evaluated. The aluminum coating showed excellent ductility among them and was selected for use as ductile layers for the multilayer coatings. The fracture behavior of WC-Co/Al coatings was examined by the four-point bending test. The multilayer coatings did not break in a brittle manner after reaching maximum load, but exhibited a plateau as a result of the ductility of the aluminum layers. The fracture behavior was compared with the finite element analysis results, and they showed good agreement in a general trend. It has been concluded that ductile metal reinforcements, by advanced thermal spray techniques such as warm spray deposition, are very effective to enhance the toughness and damage tolerance of sprayed cermet coatings. 相似文献
15.
16.
WC-Co coatings are primarily deposited using the high velocity oxy-fuel (HVOF) spray process. However, the decomposition and decarburization of carbides during spraying affects the wear performance and fracture toughness of the coatings. In this paper, a novel high pressure HVOF was developed to achieve lower particle temperature and higher particle velocity. It enables combustion chamber pressures up to 3.0 MPa. The influence of combustion chamber pressure and oxygen/fuel ratio on WC-Co particle velocity and temperature levels were analyzed by numerical simulation. The experimental results show that the combustion chamber pressure and the oxygen/fuel ratio have a significant influence on particle velocity and melting degree, as well as on the microstructure and microhardness of the coating. High velocity WC-Co particles in different states, i.e., molten, semi-molten, and non-molten can be readily obtained by changing the spraying conditions. A comparison to the conventional JP-5000 was also performed. 相似文献
17.
18.
Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers. 相似文献
19.
XU Xiang-yang HAN Jian-min ZHONG Min-lin LIU Wen-jin . Institute of Materials Science Engineering Beijing Jiaotong University Beijing China . Department of Mechanical Engineering Tsinghua University Beijing China 《材料热处理学报》2004,25(5)
NiAl intermetallic alloys are potential high temperaturestructural materials in aeronautical and astronauticalindustries[1].However,the poor ductility andtoughness at room temperature severely restrict theirengineering applications[2,3].It is important todevelop new technology to product intermetallicmaterials for the improvement of the comprehensiveproperties and the workability.Laser powder depositionhas been used to synthesize many new materials.Furthermore,if incorporated with rapid proto… 相似文献