首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ε-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ε-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.  相似文献   

2.
The oil-quenched 30CrMnSiA steel specimens have been pulse plasma-nitrided for 4 h using a constant 25% N2-75% H2 gaseous mixture. Different nitriding temperatures varying from 400 to 560 °C have been used to investigate the effects of treatment temperature on the microstructure, microhardness, wear, and corrosion resistances of the surface layers of the nitrided specimens. The results show that significant surface-hardened layer consisting of compound and diffusion layers can be obtained when the oil-quenched steel (α′-Fe) are plasma-nitrided at these experimental conditions, and the compound layer mainly consists of ε-Fe2-3N and γ′-Fe4N phases. Lower temperature (400-500 °C) nitriding favors the formation of ε-Fe2-3N phase in surface layer, while a monophase γ′-Fe4N layer can be obtained when the nitriding is carried out at a higher temperature (560 °C). With increasing nitriding temperature, the compound layer thickness increases firstly from 2-3 μm (400 °C) to 8 μm (500 °C) and then decreases to 4.5 μm (560 °C). The surface roughness increases remarkably, and both the surface and inner microhardness of the nitrided samples decrease as increasing the temperature. The compact compound layers with more ε-Fe2-3N phase can be obtained at lower temperature and have much higher wear and corrosion resistances than those compound layers formed employing 500-560 °C plasma nitriding.  相似文献   

3.
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650?°C for 2?h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (????), expanded austenite (??N), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610?°C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650?°C, the expanded austenite decomposed into ??N and CrN. The decomposed ??N then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125?±?5?kJ/mol.  相似文献   

4.
In this study, an ultrafine-grained surface layer with the average grain size of about 10 nm was fabricated on a stainless steel plate by surface mechanical attrition treatment (SMAT). Plasma nitriding of the samples was carried out by a low-frequency pulse-excited plasma unit. Optical microscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, micro-indentation, and pin-on-disk wear and corrosion experiments were performed for characterization before and after plasma nitriding. It is found that the pre-SMATed sample developed a nitrided layer twice as thick as that on the as-received sample under the same nitriding conditions (300 °C for 4 h), which can be mainly attributed to the fast diffusion of nitrogen along grain boundaries in the nanostructured layer induced by means of SMAT. Results showed that nitriding layers of the as-received and pre-SMATed samples up to 300 °C are dominated by S-phase (γN), but its peak intensity for the pre-SMATed sample is sharper than that of the as-received one. During 500 °C nitriding treatment, the nitrogen would react with Cr in the steel to form CrN precipitates, which would lead to the depletion of chromium in the solid solution phase of the nitrided layer. Furthermore, the nitrided layer of the pre-SMATed sample exhibited a high hardness, and an excellent wear and corrosion resistance.  相似文献   

5.
High temperature gas nitriding (HTGN) at 1050 °C and tempering of a 17Cr-1Ni-0.5C-0.4V (CNV) steel were experimentally investigated. The phases appearing in the surface layer of the HTGN-treated steel were martensite and austenite with mostly Cr2N precipitates that were formed by permeated nitrogen, and a small amount of Cr23C6 and VN precipitates. The reverse migration of carbon hindered the diffusion of nitrogen when nitrogen permeated from the surface to the interior, which resulted in the accumulation of nitrogen on the outermost surface. The strong affinity between nitrogen and chromium atoms induced the diffusion of chromium from the interior to the surface, leading to the substitution of Cr23C6 for Cr2N. After tempering the HTGN-treated steel at 500 °C, the dense precipitates of Cr2N and the increased martensite phase in the surface layer led to secondary hardening, which increased the hardness value up to 901 Hv.  相似文献   

6.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

7.
A 2Cr13 steel was gas nitrided in pure NH3 gas atmosphere at 793 K for 20 h. The microstructure, composition and microhardness of the nitrided samples were examined. The tribological behaviour of the nitrided 2Cr13 steel in air and vacuum was investigated in order to analyse effects of the nitriding on wear resistance of the 2Cr13 steel. The results show that the nitrided layer consists of a compound layer and diffusion zone. The nitriding increases both the surface hardness and wear resistance of 2Cr13 steel in air and vacuum, and the anti-wear characteristic of the nitrided 2Cr13 steel in vacuum is much higher than that in air. The nitrided layer exhibits a mild wear in air, and avoids the severe wear that happens on the unnitrided steel. While the adhesion dominates the wear process in vacuum. The material transfer between the wear couples helps to improve the tribological characteristics of the nitrided layer in vacuum.  相似文献   

8.
Liquid nitriding of type 321 austenite stainless steel was conducted at low temperature at 430 °C, using a type of a complex chemical heat-treatment; and the properties of the nitrided surface were evaluated. Experimental results revealed that a modified layer was formed on the surface with the thickness ranging from 2 to 30 μm varying with changing treatment time. When the stainless steel subjected to the advanced liquid nitriding less than 8 h at 430 °C, the main phase of the nitrided coating layer was the S phase generally. When the treatment time prolonged up to 16 h, S phase formed and partially transformed to CrN subsequently; and then the fine secondary CrN phase precipitated. All treatments performed in the current study can effectively improve the surface hardness. The nitrided layer thickness changed intensively with the increasing nitrided time. The growth of the nitride layer took place mainly by nitrogen diffusion according to the expected parabolic rate law. The highest hardness value obtained in this experiment was about 1400 Hv0.25. Low-temperature nitriding can improve the corrosion resistance of the 321 stainless steel against diluted vitriolic acid. The immerse test results revealed that the sample nitrided for 16 h had the best corrosion resistance than the others. SEM examinations indicated that after nitriding, the corrosion mechanisms of the steel had changed from serious general corrosion of untreated sample to selectivity corrosion of nitrided samples in the diluted vitriolic acid.  相似文献   

9.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

10.
A duplex surface treatment consisting of High Temperature Gas Nitriding (HTGN) followed by Low Temperature Plasma Nitriding (LTPN) was carried out in an UNS S31803 duplex stainless steel. The HTGN treatment was intended to produce a relatively thick and hard fully austenitic layer giving mechanical support to the thinner and much harder expanded austenite layer. HTGN was performed at 1200 °C for 3 h, in a 0.1 MPa N2 atmosphere while LTPN, was carried out in a 75% N2 + 25% H2 atmosphere, at 400 °C for 12 h, under a 250 Pa pressure, and 450 V. An expanded austenite γN layer, 2.3 μm thick, 1500 HV0.025 hard, was formed on top of a 100 μm thick, 330 HV 0.1 hard, fully austenitic layer, containing 0.9 wt% N. For comparison purposes LTPN was carried out with UNS S30403 stainless steel specimens obtaining a 4.0 μm thick, 1500 HV 0.025 hard, expanded austenite layer formed on top of a fully austenitic matrix having 190 HV 0.1. The nitrided specimens were tested in a 20 kHz vibratory cavitation-erosion testing equipment. Comparison between the duplex treated UNS S31803 steel and the low temperature plasma nitrided UNS S30403 steel, resulted in incubation times almost 9 times greater. The maximum cavitation wear rate of the LTPN UNS S30403 was 5.5 g/m2h, 180 times greater than the one measured for the duplex treated UNS S31803 steel. The greater cavitation wear resistance of the duplex treated UNS S31803 steel, compared to the LTPN treated UNS S30403 steel was explained by the greater mechanical support the fully austenitic, 330 HV 0.1 hard, 100 μm layer gives to the expanded austenite layer formed on top of the specimen after LTPN. A strong crystallographic textured surface, inherited from the fully austenitic layer formed during HTGN, with the expanded austenite layer showing {101} crystallographic planes//surface contributed also to improve the cavitation resistance o f the duplex treated steel.  相似文献   

11.
为提高液压柱塞泵用30CrMoV9钢的综合性能及表面的耐磨性和抗疲劳性,对30CrMoV9钢的调质工艺及粗加工后的气体渗氮工艺进行了研究,对调质硬度、渗氮层深度、渗氮后的显微组织、渗氮层硬度等进行了测试。结果表明,经900 ℃淬火及630~640 ℃的回火处理后,30CrMoV9钢可满足硬度在28~35 HRC的要求;调质态30CrMoV9钢进行气体渗氮处理后,表面平均硬度可达750 HV0.5以上,可有效提高零件的接触疲劳强度。  相似文献   

12.
王怡萱 《表面技术》2024,53(7):200-207
目的 选择M50NiL钢(高合金钢)和AISI 4140钢(低合金钢)2种合金钢,研究渗氮气压对合金钢等离子体渗氮层组织结构、渗层厚度、硬度、韧性和摩擦磨损性能的影响规律。方法 根据离子渗氮GB/T30883—2017,在0~500 Pa渗氮气压范围内选择170、250、350 Pa 3个渗氮气压进行等离子体渗氮,研究渗层微观结构和性能。结果 对于M50NiL和AISI 4140两种合金钢,350 Pa时渗层厚度均最大,170 Pa次之,250 Pa厚度最小。M50NiL钢在350 Pa渗氮和AISI 4140钢在170 Pa渗氮时,表面层具有最优的强韧性。摩擦磨损性能显示,170 Pa和350 Pa气压渗氮的摩擦磨损性能明显优于250 Pa气压渗氮,其中磨损率规律与渗氮层的韧性值测试结果吻合。结论 气压影响了氮离子的能量和分布,从而影响了渗层厚度,钢中的合金元素含量和气压共同影响表面强韧化效果,并且表面强韧化效果直接影响渗氮层的摩擦磨损性能。  相似文献   

13.
The effect of the High Temperature Gas Nitriding (HTGN) and tempering treatment of 17Cr-1Ni-0.5C-0.8Mo (CNMo) steel was experimentally investigated. The HTGN was carried out at 1050 °C for 1 h in a gaseous atmosphere containing 98.07 kPa of nitrogen. Chromium nitrides in the austenite and martensite phase appeared at the nitrogen-permeated surface layer after the HTGN treatment. The hardness of the outmost surface of the HTGN treated specimen measured 708 Hv. When it was tempered at 500 °C for 1 h, the hardness of the outmost surface was 763 Hv as a result of the precipitation of mostly micro Cr2N, which was densely packed with a small amount of Cr23C6 and the secondary hardening effect. In addition, an improvement in the corrosion resistance was observed in the tempered specimen.  相似文献   

14.
38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究   总被引:3,自引:2,他引:3  
研究了38CrMoAlA和40Cr钢经气体渗氮、气体氮碳共渗、离子渗氮处理后渗氮层的组织、硬度、摩擦磨损和腐蚀性能。试验结果表明,38CrMoAlA钢渗氮层的硬度及在3.5%NaCl溶液中的耐蚀性能高于40Cr钢,但抗摩擦磨损性能不如40Cr钢。依气体渗氮、气体氮碳共渗到离子渗氮的顺序,渗氮层的抗磨损性能逐次提高,但抗腐蚀能力逐次降低。从钢的化学成分、渗氮层的硬度和韧性出发,对38CrMoAlA和40Cr钢渗氮层的性能差异进行了分析与总结。  相似文献   

15.
In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.  相似文献   

16.
In this study, the wear- and corrosion resistance of the layers formed on the surface of a precipitation hardenable plastic mold steel (NAK55) by plasma nitriding were investigated. Plasma nitriding experiments were carried out at an industrial nitriding facility in an atmosphere of 25% N2 + 75% H2 at 475 °C, 500 °C, and 525 °C for 10 h. The microstructures of the nitrided layers were examined, and various phases present were determined by X-ray diffraction. Wear tests were carried out on a block-on-ring wear tester under unlubricated conditions. The corrosion behaviors were evaluated using anodic polarization tests in 3.5% NaCl solution.The findings had shown that plasma nitriding does not cause the core to soften by overaging. Nitriding and aging could be achieved simultaneously in the same treatment cycle. Plasma nitriding of NAK55 mold steel produced a nitrided layer consisted of a compound layer rich in ε-nitride and an adjacent nitrogen diffusion layer on the steel surface. Increasing the nitriding temperature could bring about increase in the thickness of the nitrided layer and the nitride volume fraction. Plasma nitriding improved not only surface hardness but also wear resistance. The anti-wear property of the steel was found to relate to the increase in the thickness of the diffusion layer. Corrosion study revealed that plasma nitriding significantly improved corrosion resistance in terms of corrosion potential and corrosion rate. Improvement in corrosion resistance was found to be directly related to the increase in the nitride volume fraction at the steel surface.  相似文献   

17.
The microstructure and tempering response of Cr-V ledeburitic steel Vanadis 6 subjected to sub-zero treatment at ??196 °C for 4 h have been examined with reference to the same steel after conventional heat treatment. The obtained experimental results infer that sub-zero treatment significantly reduces the retained austenite amount, makes an overall refinement of microstructure, and induces a significant increase in the number and population density of small globular carbides with a size 100-500 nm. At low tempering temperatures, the transient M3C-carbides precipitated, whereas their number was enhanced by sub-zero treatment. The presence of chromium-based M7C3 precipitates was evidenced after tempering at the temperature of normal secondary hardening; this phase was detected along with the M3C. Tempering above 470 °C converts almost all the retained austenite in conventionally quenched specimens while the transformation of retained austenite is rather accelerated in sub-zero treated material. As a result of tempering, a decrease in the population density of small globular carbides was recorded; however, the number of these particles retained much higher in sub-zero treated steel. Elevated hardness of sub-zero treated steel can be referred to more completed martensitic transformation and enhanced number of small globular carbides; this state is retained up to a tempering temperature of around 500 °C in certain extent. Correspondingly, lower as-tempered hardness of sub-zero treated steel tempered above 500 °C is referred to much lower contribution of the transformation of retained austenite, and to an expectedly lower amount of precipitated alloy carbides.  相似文献   

18.
The effect of the temperature of preliminary tempering and gas nitriding on the wear resistance and structure of surface layers of steel 38Kh2MYuA is investigated. Triboengineering and structural characteristics of nitrided layer including a layer with virtual absence of wear are obtained. Ways for optimizing nitriding modes are outlined.  相似文献   

19.
缪跃琼  林晨  高玉新  郑少梅  程虎 《表面技术》2015,44(8):61-64,102
目的研究304不锈钢离子渗氮层和氮碳共渗层的组织、硬度及耐磨、耐蚀性能,并考察渗层的磨损机理。方法利用离子渗氮及氮碳共渗工艺在304不锈钢表面获得硬化层,利用XRD,OM及共聚焦显微镜、显微硬度仪、电化学测试仪,分析处理前后渗层的组织、相结构及渗层的硬度及耐磨耐蚀性能。结果 304不锈钢氮碳共渗和渗氮层主要为S相层,在相同工艺条件下,氮碳共渗工艺获得的渗层为γN+γC的复合渗层,且厚度大于单一渗氮层。渗氮层和氮碳共渗层硬度约为基体硬度的3.5倍。在干滑动摩擦条件下,氮碳共渗层比渗氮层具有更好的耐磨性能;渗氮层的磨损机理为磨粒磨损的犁沟效应和断裂,氮碳共渗层的磨损机理为磨粒磨损的犁沟和微切削。电化学测试表明,渗氮层和氮碳共渗层的耐蚀性能均优于基体。结论 304不锈钢在420℃进行离子渗氮和氮碳共渗处理后,硬度和耐磨性能可大幅提高,且氮碳共渗处理效果更佳。  相似文献   

20.
The effect of different post-weld heat treatments on the microstructure and wear resistance of martensitic deposits were studied. The deposit was welded using a metal-cored tubular wire, in the flat welding position, on a 375 × 75 × 19 mm SAE 1010 plate, using 98% Ar–2% CO2 shielding gas mixture and with an average heat input of 2.8 kJ/mm. The samples were heat treated at temperatures between 500 and 680°C for 2 h. Chemical composition, Vicker's microhardness and wear properties with AMSLER tests in a sliding condition were determined. In the as welded condition, the microstructure was principally composed of martensite and retained austenite. Significant variations in wear resistance and hardness were measured for different tempering temperatures. For the different heat-treated conditions, it was observed that the decomposition of retained austenite to martensite and carbide precipitation was associated with the tempering of martensite. A secondary hardness effect was detected with maximum hardness of 710 HV for 550°C heat treatment temperature. The best performance in wear test was obtained for this condition. Wear rates for the different conditions were obtained and mathematical expressions were developed. For each case, wear mechanisms were analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号