首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on electrical conductivity relaxation measurements of solid polymer electrolytes (SPE) based on poly(vinyl alcohol) (PVOH) and LiClO4 in which nanoporous Al2O3 particles with average pore diameter of 58 Å were dispersed. A power law frequency dependence of the real part of the electrical conductivity is observed as a function of temperature and composition. This behaviour is typical of systems in which correlated ionic motions in the SPE bulk material are responsible for ionic conductivity. This variation is well fitted to a Jonscher expression σ′(ω) = σ0[1 + (ω/ω0)p] where σ0 is the dc conductivity, ω0 the characteristic angular frequency relaxation and p is the fractional exponent between 0 and 1. For a prototype membrane with composition 0.9PVOH − 0.1LiClO4 + 7 wt.%Al2O3, it was found that the temperature dependence of σ0 and ω0, may be described by the VTF relationship, ? = ?0 exp[−B/(T − T0)], with approximately the same constant B and reference temperature T0, indicating that ion mobility is coupled to the motions of the polymer chains. Moreover, p decreased with increasing temperature, from 0.68 at T = 319 K, to 0.4 at T = 437 K, indicating weaker correlation effects among mobile ions when the temperature is increased.  相似文献   

2.
Solid state glass electrolyte, xLi2O-(1 − x)(yB2O3-(1 − y)P2O5) glasses were prepared with wide range of composition, i.e. x = 0.35 - 0.5 and y = 0.17 - 0.67. This material system is one of the parent compositions for chemically and electrochemically stable solid-state electrolyte applicable to thin film battery. Lithium ion conductivity of Li2O-B2O3-P2O5 glasses was studied in the correlation to the structural variation of glass network by using FTIR and Raman spectroscopy. The measured ionic conductivity of the electrolyte at room temperature increased with x and y. The maximum conductivity of this glass system was 1.6 × 10−7 Ω−1 cm−1 for 0.45Li2O-0.275B2O3-0.275P2O5 at room temperature. It was shown that the addition of P2O5 reduces the tendency of devitrification and increases the maximum amount of Li2O added into glass former without devitrification. As Li2O and B2O3 contents increased, the conductivity of glass electrolyte increased due to the increase of three-coordinated [BO3] with a non-bridging oxygen (NBO).  相似文献   

3.
This paper describes the synthesis and characterization of three-dimensional hybrid inorganic-organic networks prepared by a polycondensation reaction between Zr(O(CH2)3CH3)4 and polyethylene glycol 400 (PEG400). Eleven hybrid networks doped with varying concentrations of LiClO4 salt were prepared. On the basis of analytical data and FT-Raman studies it was concluded that these polymer electrolytes consist of inorganic-organic networks with zirconium atoms bonded together by PEG400 bridges. These polymers are transparent with a solid rubber consistency and are very stable under inert atmosphere. Scanning electron microscopy revealed a smooth glassy surface. X-ray fluorescence microanalysis with energy dispersive spectroscopy demonstrated that all the constituent elements are homogeneously distributed in the materials. Thermogravimetric measurements revealed that these materials are thermally stable up to 262 °C. Differential Scanning Calorimetry measurements indicated that the glass transition temperature Tg of these inorganic-organic hybrids varies from −43 to −15 °C with increasing LiClO4 concentration. FT-Raman investigations revealed the TGT (T=trans, G=gauche) conformation of polyether chains and allowed characterization of the types of ion-ion and ion-polymer host interactions in the bulk materials. The conductivity of the materials at different temperatures was determined by impedance spectroscopy over the 20 Hz-1 MHz frequency range. Results indicated that the materials conduct ionically and that their ionic conductivity is strongly influenced by the segmental motion of the polymer network and the type of ionic species distributed in the bulk material. Finally, it is to be highlighted that the hybrid network with a nLi/nO molar ratio of 0.0223 shows a conductivity of ca. 1×10−5 S cm−1 at 40 °C.  相似文献   

4.
On the basis of our studies it results that dielectric properties of BaBi2Nb2O9 ceramics are sensitive to axial pressure applied. The pressure causes an increase of dispersion in the real part of dielectric permittivity ?′(T,f) and a rise in the temperature Tm at which the maximum in ?′(T,f) dependence occurs. The applied pressure induces in the ?′(T) dependence an additional step-like anomaly, which appears at the temperature TA < Tm. The applied pressure shifts both Tm and TA at the same rate, i.e. dTA/dX = dTm/dX = +14 °C/kbar at high axial pressure range, above the threshold pressure Xthresh. The Vogel–Fulcher relationship is employed to determine the axial pressure influence on relaxor properties of BBN ceramics. The simulated order parameter q takes non-zero values below Burn‘s temperature TB, where the polar clusters appear on cooling. For pressures higher than 0.8 kbar, the TB changes at the rate dTB/dX = −200 °C/kbar. The decrease in the difference between Burn's TB and the freezing Tf temperatures induced by the applied axial pressure is observed. This could be ascribed to the narrowing of temperature range of relaxor behavior.  相似文献   

5.
The structure of the free volume and its temperature dependence between 25 and 200 °C of copolymers of styrene with maleic anhydride, SMA (0-35 mol% MA), is studied by pressure-volume-temperature (PVT) experiments and positron annihilation lifetime spectroscopy (PALS). In this first part of the work, PVT data are reported which were analysed with the Simha-Somcynsky equation of state to estimate the volume fraction of holes, h, which constitute the excess free volume. The temperature and pressure dependence of the specific volume V, the specific occupied and free volume, Vocc=(1−h)V and Vf=hV, and the corresponding isobaric expansivities and isothermal compressibilities for both the rubbery and glassy state are estimated. We obtained the unexpected results that (i) the occupied volume changes its coefficient of thermal expansion at Tg from αocc,g≈0.5αg≈1×10−4 K−1 below Tg to almost zero (≈0.2×10−4 K−1) above Tg and (ii) the isothermal compressibility of the occupied volume at zero pressure below Tg is rather high, κocc≈2.5×10−4 MPa−1, and decreases only slightly at Tg to about 2×10−4 MPa−1 above Tg. The variation of total, occupied, and free volume parameters with the composition of the SMA copolymers is discussed.  相似文献   

6.
A gelatin-based electrolyte has been developed and characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and atomic force microscopy (AFM). The heat treatment temperature was found the key factor affecting its ionic conductivity that increases from 1.5 × 10−5 S/cm to 4.9 × 10−4 S/cm by heating from room temperature up to 80 °C. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior. EC-devices with the configuration K-glass/Nb2O5:Mo EC-layer/gelatin-based electrolyte/(CeO2)x(TiO2)1−x ion-storage (IS) layer/K-glass, have been assembled and characterized. They show a good long time cyclic stability, but the change of the optical density measured at 550 nm after 25 000 cycles was only 0.13.  相似文献   

7.
A new and novel electrically conducting ‘polymeric-inorganic’ composite cation-exchange material; polyaniline Sn(IV) tungstoarsenate was prepared by incorporating polyaniline into inorganic ion-exchanger material. It possessed improved ion-exchange capacity, high chemical and thermal stabilities, reproducibility and selectivity for some specific metal ions. Kinetic study of exchange for some divalent metal ions of alkaline earths and transition metals was carried out under the conditions favoring a particle diffusion-controlled ion-exchange phenomenon and some physical parameters such as self diffusion coefficient D0, energy of activation Ea and entropy of activation ΔS* were determined. The temperature dependence of electrical conductivity of this composite material with increasing temperatures was measured by using 4-in-line-probe DC electrical conductivity measuring-technique. The conductivity values lie in the semiconductor region, i.e. in the range of 10−3 S cm−1 that follow the Arrhenius equation. The energy of activation of electrical conduction for the composite was also calculated.  相似文献   

8.
Melting parameters of poly(glycolic acid)   总被引:2,自引:0,他引:2  
Equilibrium melting temperature Tm0, heat of fusion ΔHf, and entropy of fusion ΔSf of poly(glycolic acid) (PGA) was determined by using Clapeyron-Clausius equation. Equilibrium melting temperature Tm0 was 504.6 K which was determined by Hoffman-Weeks plots. The pressure dependence of Tm0 was determined by high pressure DTA up to 150 MPa. Volume change ΔVf at melting was determined by using dilatometer. Heat of fusion in PGA was 183.2 (J g−1), which is very close to the value reported by Chujo et al. who determined it by using Tm depression in copolymer with poly(lactic acid). ΔSf of PGA was 0.363 (J g−1 K−1), which is about twice that of PLA, and the reason was discussed on the basis of the elastic modulus below Tm.  相似文献   

9.
yPb(In1/2Nb1/2)O3-(1 − x − y)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (yPIN-(1 − x − y)PMN-xPT) polycrystalline ceramics with morphotropic phase boundary (MPB) compositions were synthesized using columbite precursor method. X-ray diffraction results indicated that the MPB of PIN-PMN-PT was located around PT = 0.33-0.36, confirmed by their respective dielectric, piezoelectric and electromechanical properties. The optimum properties were found for the MPB composition 0.36PIN-0.30PMN-0.34PT, with dielectric permittivity ?r of 2970, piezoelectric coefficient d33 of 450 pC/N, planar electromechanical coupling kp of 49%, remanent polarization Pr of 31.6 μC/cm2 and TC of 245 °C. According to the results of dielectric and pyroelectric measurements, the Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR-T were obtained, and the “flat” MPB for PIN-PMN-PT was achieved, indicating that the strongly curved MPB in PMN-PT system was improved by adding PIN component, offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range (limited by TR-T).  相似文献   

10.
A composite lithium battery electrode of LiMn2O4 in combination with a gel electrolyte (1 M LiBF4/24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. −3<T<56 °C. For analysis of EIS data, a mathematical model taking into account local kinetics and potential distribution in the liquid phase within the porous electrode structure was used. Reasonable values of the double-layer capacitance, the exchange-current density and the solid phase diffusion were found as a function of temperature. The apparent activation energy of the charge-transfer (∼65 kJ mol−1), the solid phase transfer (∼45 kJ mol−1) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol−1), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn2O4.  相似文献   

11.
Ce0.8Sm0.2O1.9−δ powders were prepared by a freeze drying method and used to obtain ceramic disks. These samples were used to study the electronic transport properties of this material. A Hebb-Wagner method was used to obtain the electronic conductivity under ion blocking conditions. Typical values of electronic conductivity measured for this material at 800 °C were about 0.37 S m−1 at Po2=10−16 atm and 0.58 S m−1 at PO2=10−18 atm. These values are significantly lower than results reported for ceria-based materials with different trivalent additives. A coulometric titration method was used to estimate the charge carrier concentrations, and the mobility of carriers was obtained on combining the results of conductivity and concentration. Typical values of mobility show weak temperature dependence and decrease with increasing oxygen deficiency, suggesting a limiting value of about 0.5×10−7 m2. V−1 s−1 for relatively high δ.  相似文献   

12.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

13.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

14.
Oxygen deficiency of Bi2V0.90Cu0.10O5.5−δ (BICUVOX.10) solid electrolyte was studied by the coulometric titration technique and thermogravimetric analysis at oxygen partial pressures from 1×10−7 to 0.5 atm (atmospheric air) in the temperature range 650-1050 K. Within the phase stability domain, the nonstoichiometry (δ) varies in the narrow range from 0.150 to 0.155. Increasing oxygen deficiency leads to a greater n-type electronic conductivity, which can be described by common models for other solid electrolytes. The partial molar enthalpy and entropy for oxygen incorporation into Bi2V0.9Cu0.1O5.5−δ lattice linearly decrease with increasing δ. Further reduction of the oxygen partial pressure results in decomposition of Bi2V0.90Cu0.10O5.5−δ, forming a mixture of an Aurivillius-type phase and binary metal oxides, which is accompanied with decreasing ionic conductivity. The results of the coulometric titration and ion transference number measurements suggest that BICUVOX.10 ceramics can be used as electrolyte only at atmospheric or higher oxygen pressures, preferably at temperatures below 900-950 K.  相似文献   

15.
Glass phases showing high ionic conductivity at room temperature were prepared through a rapid quenching of the molten mixtures of the system AgIAg2OB2O3 (a fixed Ag2O/B2O3 = 1 molar ratio was always considered): the obtained specimens were homogeneous and transparent cylindrical blocks.Disk shaped cells prepared with such specimens did not show any grain-grain effect as supported by the comparison between four electrodes dc and ac conductivity determinations.A less than 10?9(ohm cm)?1 electronic conductivity was found.According to X-rays diffraction and DTA investigations, XAgI > 0.8 samples contained crystallized AgI, whereas 0.1 < XAgI < 0.8 samples could be considered actual vitreous homogeneous phases.AgI contents lower than 10 mole% were not considered due to the observed presence of segregated metallic silver.Room temperature density and conductivity data showed a regular behaviour vs XAgI in the vitreous phases range, whereas an evident discontinuity was observed about XAgI = 0.8.Linear fits in the Arrhenius plots of the bulk conductivity were obtained in the 120 K?Tg (glass transition temperature) range: the corresponding activation energies, as well as the high room temperature conductivities, allowed to closely compare these vetrous phases with the so called “superionic” conductors.  相似文献   

16.
Synthesis, electrochemical, and structural properties of LiNi0.8Co0.15Al0.05O2 cathodes prepared by TiO2 nanoparticles coating on a Ni0.8Co0.15Al0.05(OH)2 precursor have been investigated by the variation of coating concentration and annealing temperature. TiO2-coated cathodes showed that Ti elements were distributed throughout the particles. Among the coated cathodes, the 0.6 wt% TiO2-coated cathode prepared by annealing at 750 °C for 20 h exhibited the highest reversible capacity of 176 mAh g−1 and capacity retention of 92% after 40 cycles at a rate of 1C (=190 mA g−1). On the other hand, an uncoated cathode showed a reversible first discharge capacity of 186 mAh g−1 and the same capacity retention value to the TiO2-coated sample at a 1C rate. However, under a 1C rate cycling at 60 °C for 30 cycles, the uncoated sample showed a reversible capacity of 40 mAh g−1, while a TiO2-coated one showed 71 mAh g−1. This significant improvement of the coated sample was due to the formation of a possible solid solution between TiO2 and LiNi0.8Co0.15Al0.05O2. This effect was more evident upon annealing the charged sample while increasing the annealing temperature, and at 400 °C, the coated one showed a more suppressed formation of the NiO phase from the spinel LiNi2O4 phase than the uncoated sample.  相似文献   

17.
The behaviour of PEO8LiClO4 with different quantities of α-Al2O3 or γ-Al2O3 was investigated using DSC, AC conductivity and 7Li NMR experiments. DSC results showed that the presence of the filler does not change the glass transition temperature of the electrolyte but, on the other hand, modifies the quantity of its crystalline phase. From the AC impedance measurements, it was observed that the sample with the highest conductivity at room temperature is PEO8LiClO4 5.3 wt.% α-Al2O3. The change in the quantity of crystalline phase cannot alone explain the conductivity data, and it is suggested that the space charge contribution in the interphase of the filler particles and the polymeric chains influences the behaviour of the samples. The 7Li NMR results showed that line width narrowing begins at temperatures close to Tg. From the hydrogen decoupling experiments it was possible to estimate the LiH average distances as 2.7 Å. The LiLi distance was calculated as being between 2.6 and 3.5 Å depending on the number of near neighbours lithium nuclei used in the model.  相似文献   

18.
Positron annihilation lifetime spectroscopy (PALS) and impedance spectroscopy (IS) have been employed to study the effect of temperature and pressure on the DC conductivity (σDC) and the mean hole volume (Vh) of a NaPF6 ethylene oxide based polyurethane electrolyte. The DC conductivity of the polymer electrolyte displayed a characteristic non-Arrhenius temperature dependence yielding acceptable values for both the “pseudo-activation energy” (B) and the “zero mobility temperature” (T0) from a VTF fit. Vh(T) showed a linear increase of 0.53 cm3 (mol K)−1. When extrapolating Vh(T) to 0 K a temperature very close to T0 from the VTF fit was obtained, which suggests a free volume mediated conductivity mechanism. This suggestion is further supported by the linear dependence of ln(σDC(T)) on . Conductivity was measured as a function of pressure (σDC(P)) with ln(σDC(P)) showing a characteristic decrease with increasing pressure. The activation volumes (VA) calculated from these measurements ranged from 45 to 20 cm3 mol−1 over a temperature from 304 to 365 K. Critical volumes calculated from two current free-volume models were found to be unrealistic. Combining the extra volume required for ionic motion (VA) with the available free volume (Vh) at the same temperature poses a realistic and ‘model-free’ figure of 117 cm3 mol−1 for the critical volume at 304 K. This equates roughly to the volume of 3-4 EO units. The pressure dependence of free volume (Vh(P)) for a polymer electrolyte has been measured for the first time, and yielded a linear decrease in Vh with increasing pressure. A linear dependence of σDC(P) on was also found. A comparison of the isothermal and isobaric dependence of σDC on illustrates the contribution of factors other than free volume have on charge carrier number and mobility. This comparison shows that the variation of Vh with temperature and the variation of Vh with pressure affect the conductivity in very different ways. These results clearly show that free volume cannot be considered the sole factor responsible for conductivity in polymer electrolytes.  相似文献   

19.
The effect of concentration of AgCF3SO3 salt on the behavior of ionic transport within the polymer electrolyte system containing the polymer host poly(propylene glycol) of molecular weight 4000 (PPG4000) has been investigated in terms of spectroscopic and electrochemical properties. It is evident that the presence of well-defined interactions between the ether oxygens and silver cations arising due to the complexation of the silver salt with the polymer matrix has enabled the chosen polymer electrolyte system to possess the maximum room temperature (298 K) electrical conductivity of 9.4 × 10?5 S cm?1 in the case of the typical composition having the ether oxygen-to-metal ratio (O:M) of 4:1 and the lowest activation energy E a of 0.46 eV for Ag+ ionic conduction.  相似文献   

20.
Lieyu Hu 《Polymer》2006,47(6):2099-2105
Branched poly(N-allylethylenimine) (BPAEI), a solid state polymer electrolyte host, was synthesized by allylation of branched poly(ethylenimine) (BPEI). Allylation was essentially complete with the 2 and 1° nitrogen atoms of BPEI being mono-allylated and di-allylated, respectively, and with little or no quaternization. BPAEI can be radically cross-linked with and without lithium trifluoromethanesulfonate (LiTf) present to form free-standing, homogeneous, minimally hygroscopic films. BPAEI has a glass transition temperature (Tg) of −65 °C, as measured by differential scanning calorimetry (DSC), which increases with the concentration of initiator upon cross-linking using V-50 (2,2-azobis(2-amidino-propane) dihydrochloride) to −15 °C at a 10:1 nitrogen to initiator molar ratio (N:initiator). BPAEI with 20:1 N:Li+ (molar ratio) LiTf has a Tg of −48 °C, which increases with the concentration of radical initiator upon cross-linking using V-50 to 3 °C at 10:1 N:initiator. At compositions near 60:1 N:initiator, an unusual decrease in the rate at which Tg changes with cross-linking was observed, both with and without LiTf present, indicating that some undefined morphological changes occur. The effect of this morphological change resulted in the highest Ac conductivities at 60:1 N:initiator for all LiTf concentrations studied. At 20:1 N:Li+ LiTf and 60:1 N:initiator, the room temperature Ac conductivity was 1×10−8 S/cm which increased to 1×10−5 S/cm at 80 °C, the highest conductivity observed in the concentration ranges studied. Infrared spectroscopy (IR) showed that the concentrations of the individual ionic species present were largely independent of either LiTf concentration or cross-linking density, suggesting that changes in ion mobility, likely resulting from morphological changes, substantially control the ionic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号